Suppr超能文献

具有源项的 n 维非线性双曲型守恒律的格子 Boltzmann 方法。

Lattice Boltzmann method for n-dimensional nonlinear hyperbolic conservation laws with the source term.

机构信息

School of Computer, National University of Defense Technology, Changsha 410073, People's Republic of China.

出版信息

Chaos. 2011 Mar;21(1):013120. doi: 10.1063/1.3553719.

Abstract

It is important for nonlinear hyperbolic conservation laws (NHCL) to own a simulation scheme with high order accuracy, simple computation, and non-oscillatory character. In this paper, a unified and novel lattice Boltzmann model is presented for solving n-dimensional NHCL with the source term. By introducing the high order source term of explicit lattice Boltzmann method (LBM) and the optimum dimensionless relaxation time varied with the specific issues, the effects of space and time resolutions on the accuracy and stability of the model are investigated for the different problems in one to three dimensions. Both the theoretical analysis and numerical simulation validate that the results by the proposed LBM have second-order accuracy in both space and time, which agree well with the analytical solutions.

摘要

对于非线性双曲守恒律(NHCL),拥有一个具有高阶精度、简单计算和非振荡特性的模拟方案非常重要。在本文中,提出了一个统一的、新颖的格子玻尔兹曼模型,用于求解具有源项的 n 维 NHCL。通过引入显式格子玻尔兹曼方法(LBM)的高阶源项和随具体问题变化的最佳无量纲松弛时间,研究了该模型在一维至三维不同问题中对空间和时间分辨率的准确性和稳定性的影响。理论分析和数值模拟都验证了所提出的 LBM 在空间和时间上具有二阶精度,与解析解吻合较好。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验