Suppr超能文献

使用具有残差和递归连接的卷积编解码器对 12 导联心电图代表性节拍进行描绘。

Delineation of 12-Lead ECG Representative Beats Using Convolutional Encoder-Decoders with Residual and Recurrent Connections.

机构信息

Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl. 105, 1113 Sofia, Bulgaria.

Signal Processing, Schiller AG, Altgasse 68, CH-6341 Baar, Switzerland.

出版信息

Sensors (Basel). 2024 Jul 17;24(14):4645. doi: 10.3390/s24144645.

Abstract

The aim of this study is to address the challenge of 12-lead ECG delineation by different encoder-decoder architectures of deep neural networks (DNNs). This study compares four concepts for encoder-decoders based on a fully convolutional architecture (CED-Net) and its modifications with a recurrent layer (CED-LSTM-Net), residual connections between symmetrical encoder and decoder feature maps (CED-U-Net), and sequential residual blocks (CED-Res-Net). All DNNs transform 12-lead representative beats to three diagnostic ECG intervals (P-wave, QRS-complex, QT-interval) used for the global delineation of the representative beat (P-onset, P-offset, QRS-onset, QRS-offset, T-offset). All DNNs were trained and optimized using the large PhysioNet ECG database (PTB-XL) under identical conditions, applying an advanced approach for machine-based supervised learning with a reference algorithm for ECG delineation (ETM, Schiller AG, Baar, Switzerland). The test results indicate that all DNN architectures are equally capable of reproducing the reference delineation algorithm's measurements in the diagnostic PTB database with an average P-wave detection accuracy (96.6%) and time and duration errors: mean values (-2.6 to 2.4 ms) and standard deviations (2.9 to 11.4 ms). The validation according to the standard-based evaluation practices of diagnostic electrocardiographs with the CSE database outlines a CED-Net model, which measures P-duration (2.6 ± 11.0 ms), PQ-interval (0.9 ± 5.8 ms), QRS-duration (-2.4 ± 5.4 ms), and QT-interval (-0.7 ± 10.3 ms), which meet all standard tolerances. Noise tests with high-frequency, low-frequency, and power-line frequency noise (50/60 Hz) confirm that CED-Net, CED-Res-Net, and CED-LSTM-Net are robust to all types of noise, mostly presenting a mean duration error < 2.5 ms when compared to measurements without noise. Reduced noise immunity is observed for the U-net architecture. Comparative analysis with other published studies scores this research within the lower range of time errors, highlighting its competitive performance.

摘要

本研究旨在通过不同的深度神经网络(DNN)编码器-解码器架构来解决 12 导联心电图描绘的挑战。本研究比较了四种基于全卷积架构的编码器-解码器概念(CED-Net)及其带有递归层的修改版(CED-LSTM-Net)、对称编码器和解码器特征图之间的残差连接(CED-U-Net)以及顺序残差块(CED-Res-Net)。所有 DNN 都将 12 导联代表性心跳转换为三个用于代表性心跳整体描绘的诊断性 ECG 区间(P 波、QRS 复合体、QT 区间)(P 波起始、P 波结束、QRS 起始、QRS 结束、T 波结束)。所有 DNN 都在相同条件下使用大型 PhysioNet ECG 数据库(PTB-XL)进行训练和优化,应用一种先进的基于机器的监督学习方法和一种 ECG 描绘参考算法(ETM,Schiller AG,Baar,瑞士)。测试结果表明,所有 DNN 架构都能够在诊断性 PTB 数据库中复制参考描绘算法的测量值,平均 P 波检测准确率为 96.6%,时间和持续时间误差为:平均值(-2.6 至 2.4 ms)和标准差(2.9 至 11.4 ms)。根据 CSE 数据库的诊断心电图标准评估实践进行验证,突出了 CED-Net 模型,该模型测量 P 波持续时间(2.6 ± 11.0 ms)、PQ 区间(0.9 ± 5.8 ms)、QRS 持续时间(-2.4 ± 5.4 ms)和 QT 区间(-0.7 ± 10.3 ms),符合所有标准公差。高频、低频和电源线频率噪声(50/60 Hz)的噪声测试证实,CED-Net、CED-Res-Net 和 CED-LSTM-Net 对所有类型的噪声都具有鲁棒性,与无噪声时相比,大多数情况下的平均持续时间误差<2.5 ms。U 型网络结构的噪声免疫力降低。与其他已发表研究的比较分析表明,该研究处于时间误差的较低范围,突出了其竞争性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/489b/11280871/064079606629/sensors-24-04645-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验