Suppr超能文献

从实时超声弹性成像的电影环中自动选择代表性切片,用于对实性乳腺肿块进行分类。

Automatic selection of representative slice from cine-loops of real-time sonoelastography for classifying solid breast masses.

机构信息

Department of Medical Imaging, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.

出版信息

Ultrasound Med Biol. 2011 May;37(5):709-18. doi: 10.1016/j.ultrasmedbio.2011.02.007. Epub 2011 Mar 31.

Abstract

This study aimed to evaluate the performance of automatic selection of representative slice from cine-loops of real-time sonoelastography for classifying benign and malignant breast masses. This retrospective study included 141 ultrasound elastographic studies (93 benign and 48 malignant masses). A novel computer-assisted system was developed for the automatic segmentation of the targeted lesion from cine-loops of real-time sonoelastography. Its hard ratio, defined as the ratio of the number of hard pixels within the tumor divided by the total number of pixels of the whole tumor, was also calculated. The targeted mass was segmented by edge-detection and region growing methods, with combined motion registration after manually defining the original seed. Signal-to-noise ratio (SNR(e)) and contrast-to-noise ratio (CNR(e)) of ultrasound elastogram were computed to obtain an optimum slice for differentiating benign and malignant lesions. The diagnostic results of automatic slice selection using maximum strain, maximum SNR(e), maximum CNR(e), maximum compression and the slices selected by radiologists were compared. Mann-Whitney U test, performance indexes and receiver operating characteristic (ROC) curves were used for statistical analysis. Performance using the maximum SNR(e) (accuracy 84.4%, sensitivity 83.3%, specificity 85.0% and A(z) value 0.90) was the best as compared with those of maximum CNR(e) (82.3%, 79.2%, 83.9% and 0.88, respectively), maximum compression (78.0%, 79.2%, 77.4% and 0.85, respectively), maximum strain (79.4%, 79.2%, 79.6% and 0.87, respectively) and radiologists' selection (77.3%, 77.1%, 77.4% and 0.80, respectively). Automatic selection of representative slice from the cine-loops of real-time sonoelastography is a practical, objective and accurate approach for classifying solid breast masses.

摘要

本研究旨在评估从实时超声弹性成像的电影环中自动选择代表性切片以对良恶性乳腺肿块进行分类的性能。本回顾性研究包括 141 项超声弹性成像研究(93 个良性肿块和 48 个恶性肿块)。开发了一种新的计算机辅助系统,用于从实时超声弹性成像的电影环中自动分割目标病变。还计算了其硬比,定义为肿瘤内硬像素的数量与整个肿瘤像素总数的比值。通过边缘检测和区域生长方法对目标肿块进行分割,然后在手动定义原始种子后进行联合运动配准。计算超声弹性图的信噪比(SNR(e))和对比噪声比(CNR(e)),以获得区分良恶性病变的最佳切片。比较了使用最大应变、最大 SNR(e)、最大 CNR(e)、最大压缩和放射科医生选择的切片进行自动切片选择的诊断结果。使用曼-惠特尼 U 检验、性能指标和接收者操作特性(ROC)曲线进行统计分析。与最大 CNR(e)(分别为 82.3%、79.2%、83.9%和 0.88)、最大压缩(78.0%、79.2%、77.4%和 0.85)、最大应变(79.4%、79.2%、79.6%和 0.87)和放射科医生选择(77.3%、77.1%、77.4%和 0.80)相比,使用最大 SNR(e)(分别为 84.4%、83.3%、85.0%和 0.90)的性能最佳。从实时超声弹性成像的电影环中自动选择代表性切片是一种实用、客观和准确的方法,可用于对实体乳腺肿块进行分类。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验