Suppr超能文献

基于超声弹性成像和 B 型模式特征的乳腺肿瘤分类:自动选择代表性图像与医生选择代表性图像的比较。

Classification of breast tumors using elastographic and B-mode features: comparison of automatic selection of representative slice and physician-selected slice of images.

机构信息

Department of Radiology, Seoul National University Hospital, Korea.

出版信息

Ultrasound Med Biol. 2013 Jul;39(7):1147-57. doi: 10.1016/j.ultrasmedbio.2013.01.017. Epub 2013 Apr 3.

Abstract

Inter-observer variability and image quality are two key factors that can affect the diagnostic performance of elastography and B-mode ultrasound for breast tumor characterization. The purpose of this study is to use an image quantification method that automatically chooses a representative slice and then segments the tumor contour to evaluate the diagnostic features for tumor characterization. First, the representative slice is selected based on either the stiffness inside the tumor (the signal-to-noise ratio on the elastogram [SNRe]) or the contrast between the tumor and the surrounding normal tissue (the contrast-to-noise ratio on the elastogram [CNRe]). Next, the level set method is used to segment the tumor contour. Finally, the B-mode and elastographic features related to the segmented tumor are extracted for tumor characterization. The performance of the representative slice selected using the proposed methods is compared to that of the physician-selected slice in 151 biopsy-proven lesions (89 benign and 62 malignant). The diagnostic accuracies using elastographic features are 82.1% (124/151) for the slice with the maximum CNRe value, 82.1% (124/151) for the slice with the maximum SNRe value and 82.8% (125/151) for the physician-selected slice, whereas the diagnostic accuracies using B-mode features are 80.8% (122/151) for the slice with the maximum CNRe value, 87.4% (132/151) for the slice with the maximum SNRe value and 84.1% (127/151) for the physician-selected slice. When using both the B-mode and elastographic features to characterize the tumor, the accuracy of diagnosis is 86.1% (130/151) for the slice with the maximum CNRe value, 90.1% (136/151) for the slice with the maximum SNRe value and 89.4% (135/151) for the physician-selected slice. Our results show that the representative slice selected by SNRe and CNRe could be used to reduce the observer variability and to increase the diagnostic performance by the B-mode and elastographic features.

摘要

观察者间的变异性和图像质量是影响弹性成像和 B 超用于乳腺肿瘤特征描述的诊断性能的两个关键因素。本研究旨在使用一种图像量化方法,自动选择一个有代表性的切片,然后对肿瘤轮廓进行分割,以评估用于肿瘤特征描述的诊断特征。首先,根据肿瘤内的硬度(弹性图上的信噪比 [SNRe])或肿瘤与周围正常组织之间的对比度(弹性图上的对比噪声比 [CNRe])选择代表性切片。接下来,使用水平集方法分割肿瘤轮廓。最后,提取与分割肿瘤相关的 B 型和弹性特征,用于肿瘤特征描述。在 151 个经活检证实的病变(89 个良性和 62 个恶性)中,比较了使用所提出的方法选择代表性切片的性能与医生选择的切片的性能。使用弹性特征的诊断准确率为最大 CNRe 值切片的 82.1%(124/151)、最大 SNRe 值切片的 82.1%(124/151)和医生选择的切片的 82.8%(125/151),而使用 B 型特征的诊断准确率为最大 CNRe 值切片的 80.8%(122/151)、最大 SNRe 值切片的 87.4%(132/151)和医生选择的切片的 84.1%(127/151)。当使用 B 型和弹性特征来描述肿瘤时,最大 CNRe 值切片的诊断准确率为 86.1%(130/151),最大 SNRe 值切片的诊断准确率为 90.1%(136/151),医生选择的切片的诊断准确率为 89.4%(135/151)。我们的结果表明,通过 SNRe 和 CNRe 选择的代表性切片可以减少观察者间的变异性,并通过 B 型和弹性特征提高诊断性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验