Suppr超能文献

阻力血管的内向重构需要依赖活性氧物质激活的基质金属蛋白酶。

Inward remodeling of resistance arteries requires reactive oxygen species-dependent activation of matrix metalloproteinases.

机构信息

Dalton Cardiovascular Research Center , Univ. of Missouri-Columbia, 134 Research Park Dr., Columbia, MO 65211, USA.

出版信息

Am J Physiol Heart Circ Physiol. 2011 Jun;300(6):H2005-15. doi: 10.1152/ajpheart.01066.2010. Epub 2011 Apr 1.

Abstract

Inward eutrophic remodeling is the most prevalent structural change of resistance arteries in hypertension. Sympathetic and angiotensin (ANG)-induced vasoconstriction has been associated with hypertension and with the production of matrix metalloproteinases (MMPs) and ROS. Therefore, we hypothesize that prolonged exposure to norepinephrine (NE) and ANG II induces arteriolar inward remodeling dependent on the activation of MMPs and the production of ROS. This hypothesis was tested on rat cremaster arterioles that were isolated, cannulated, pressurized, and exposed to either NE (10(-5.5) mol/l) + ANG II (10(-7) mol/l) or vehicle (control) for 4 h. The prolonged exposure to NE + ANG II induced inward remodeling, as evidenced by the reduced maximal arteriolar passive diameter observed after versus before exposure to the vasoconstrictor agonists. NE + ANG II also increased the arteriolar expression and activity of MMP-2 and the production of ROS as determined, respectively, by real-time RT-PCR, gel and in situ zymography, and the use of ROS-sensitive dyes with multiphoton microscopy. Inhibition of MMP activation (with GM-6001) or ROS production (with apocynin or tempol) prevented the NE + ANG II-induced inward remodeling. Inhibition of ROS production prevented the activation of MMPs and the remodeling process, whereas inhibition of MMP activation did not affect ROS production. These results indicate that prolonged stimulation of resistance arterioles with NE + ANG II induces a ROS-dependent activation of MMPs necessary for the development of arteriolar inward remodeling. These mechanisms may contribute to the structural narrowing of resistance vessels in hypertension.

摘要

内向性肥大重构是高血压阻力血管最常见的结构变化。交感神经和血管紧张素(ANG)诱导的血管收缩与高血压以及基质金属蛋白酶(MMPs)和活性氧(ROS)的产生有关。因此,我们假设,长期暴露于去甲肾上腺素(NE)和血管紧张素 II 会导致依赖于 MMP 激活和 ROS 产生的小动脉内向性重构。该假说在大鼠提睾肌小动脉上进行了测试,这些小动脉被分离、插管、加压并暴露于 NE(10(-5.5) mol/l)+ ANG II(10(-7) mol/l)或载体(对照)中 4 小时。与暴露于血管收缩剂激动剂之前相比,长期暴露于 NE + ANG II 诱导了内向性重构,这表现在观察到的最大小动脉被动直径减小。NE + ANG II 还增加了 MMP-2 的表达和活性以及 ROS 的产生,这分别通过实时 RT-PCR、凝胶和原位酶谱以及使用多光子显微镜的 ROS 敏感染料来确定。MMP 激活的抑制(用 GM-6001)或 ROS 产生的抑制(用 apocynin 或 tempol)阻止了 NE + ANG II 诱导的内向性重构。ROS 产生的抑制阻止了 MMP 的激活和重构过程,而 MMP 激活的抑制不影响 ROS 的产生。这些结果表明,NE + ANG II 对阻力小动脉的长期刺激诱导了 ROS 依赖性的 MMP 激活,这对于小动脉内向性重构的发展是必要的。这些机制可能导致高血压时阻力血管的结构变窄。

相似文献

1
Inward remodeling of resistance arteries requires reactive oxygen species-dependent activation of matrix metalloproteinases.
Am J Physiol Heart Circ Physiol. 2011 Jun;300(6):H2005-15. doi: 10.1152/ajpheart.01066.2010. Epub 2011 Apr 1.
4
P2X1 receptor-mediated vasoconstriction of afferent arterioles in angiotensin II-infused hypertensive rats fed a high-salt diet.
Hypertension. 2011 Apr;57(4):780-7. doi: 10.1161/HYPERTENSIONAHA.110.168955. Epub 2011 Feb 14.
5
The obligatory role of the actin cytoskeleton on inward remodeling induced by dithiothreitol activation of endogenous transglutaminase in isolated arterioles.
Am J Physiol Heart Circ Physiol. 2014 Feb 15;306(4):H485-95. doi: 10.1152/ajpheart.00557.2013. Epub 2013 Dec 13.
7
Vascular but not cardiac remodeling is associated with superoxide production in angiotensin II hypertension.
J Hypertens. 2005 Sep;23(9):1737-43. doi: 10.1097/01.hjh.0000179513.71018.09.
8
p47(phox) is required for afferent arteriolar contractile responses to angiotensin II and perfusion pressure in mice.
Hypertension. 2012 Feb;59(2):415-20. doi: 10.1161/HYPERTENSIONAHA.111.184291. Epub 2011 Dec 19.
9
Superoxide mediates acute renal vasoconstriction produced by angiotensin II and catecholamines by a mechanism independent of nitric oxide.
Am J Physiol Heart Circ Physiol. 2007 Jan;292(1):H83-92. doi: 10.1152/ajpheart.00715.2006. Epub 2006 Sep 1.
10
Prostaglandin influences on afferent arteriolar responses to vasoconstrictor agonists.
Am J Physiol. 1990 Jul;259(1 Pt 2):F157-63. doi: 10.1152/ajprenal.1990.259.1.F157.

引用本文的文献

1
Pulmonary hypertension impairs vasomotor function in rat diaphragm arterioles.
Microvasc Res. 2024 Jul;154:104686. doi: 10.1016/j.mvr.2024.104686. Epub 2024 Apr 12.
2
Sitting leg vasculopathy: potential adaptations beyond the endothelium.
Am J Physiol Heart Circ Physiol. 2024 Mar 1;326(3):H760-H771. doi: 10.1152/ajpheart.00489.2023. Epub 2024 Jan 19.
3
Multiple aspects of lymphatic dysfunction in an mouse model of hypercholesterolemia.
Front Physiol. 2023 Jan 6;13:1098408. doi: 10.3389/fphys.2022.1098408. eCollection 2022.
4
Vascular mechanotransduction.
Physiol Rev. 2023 Apr 1;103(2):1247-1421. doi: 10.1152/physrev.00053.2021. Epub 2023 Jan 5.
5
Supplemental oxygen administration during mechanical ventilation reduces diaphragm blood flow and oxygen delivery.
J Appl Physiol (1985). 2022 May 1;132(5):1190-1200. doi: 10.1152/japplphysiol.00021.2022. Epub 2022 Mar 24.
6
Mechanobiology of Microvascular Function and Structure in Health and Disease: Focus on the Coronary Circulation.
Front Physiol. 2021 Dec 23;12:771960. doi: 10.3389/fphys.2021.771960. eCollection 2021.
8
Oxidative Stress-Related Susceptibility to Aneurysm in Marfan's Syndrome.
Biomedicines. 2021 Sep 6;9(9):1171. doi: 10.3390/biomedicines9091171.
9
Effects of elevated positive end-expiratory pressure on diaphragmatic blood flow and vascular resistance during mechanical ventilation.
J Appl Physiol (1985). 2020 Sep 1;129(3):626-635. doi: 10.1152/japplphysiol.00320.2020. Epub 2020 Jul 30.
10
LIMK (LIM Kinase) Inhibition Prevents Vasoconstriction- and Hypertension-Induced Arterial Stiffening and Remodeling.
Hypertension. 2020 Aug;76(2):393-403. doi: 10.1161/HYPERTENSIONAHA.120.15203. Epub 2020 Jun 29.

本文引用的文献

1
Therapeutic targeting of mitochondrial superoxide in hypertension.
Circ Res. 2010 Jul 9;107(1):106-16. doi: 10.1161/CIRCRESAHA.109.214601. Epub 2010 May 6.
2
Angiotensin II stimulates thick ascending limb superoxide production via protein kinase C(α)-dependent NADPH oxidase activation.
J Biol Chem. 2010 Jul 9;285(28):21323-8. doi: 10.1074/jbc.M110.109157. Epub 2010 May 6.
3
Matrix metalloproteinases cleave the beta2-adrenergic receptor in spontaneously hypertensive rats.
Am J Physiol Heart Circ Physiol. 2010 Jul;299(1):H25-35. doi: 10.1152/ajpheart.00620.2009. Epub 2010 Apr 9.
4
Enhanced myogenic response in the afferent arteriole of spontaneously hypertensive rats.
Am J Physiol Heart Circ Physiol. 2010 Jun;298(6):H1769-75. doi: 10.1152/ajpheart.00537.2009. Epub 2010 Apr 2.
6
Imbalance between matrix metalloproteinases and tissue inhibitor of metalloproteinases in hypertensive vascular remodeling.
Matrix Biol. 2010 Apr;29(3):194-201. doi: 10.1016/j.matbio.2009.11.005. Epub 2009 Dec 5.
8
Matrix metalloproteinase-2 and myocardial oxidative stress injury: beyond the matrix.
Cardiovasc Res. 2010 Feb 1;85(3):413-23. doi: 10.1093/cvr/cvp268. Epub 2009 Aug 4.
9
Comparison of inhibitors of superoxide generation in vascular smooth muscle cells.
Br J Pharmacol. 2009 Jul;157(6):935-43. doi: 10.1111/j.1476-5381.2009.00259.x. Epub 2009 May 18.
10
The macrocirculation and microcirculation of hypertension.
Curr Hypertens Rep. 2009 Jun;11(3):182-9. doi: 10.1007/s11906-009-0033-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验