Department of Chemistry and Biochemistry, University of Delaware, 214A Drake Hall, Newark, DE 19716, USA.
Cell Biochem Biophys. 2011 Jun;60(1-2):47-60. doi: 10.1007/s12013-011-9187-3.
Ubiquitin and ubiquitin-like proteins (Ubls) are now at the center stage of molecular and cell biology because of their diverse functions in many fundamentally important cellular processes. Besides the celebrated role of ubiquitin in the 26S proteasome-mediated protein degradation pathway, the non-proteolytic functions of ubiquitin are being uncovered at a fast pace. The prominent examples include membrane trafficking, innate immunity, kinase signaling, chromatin dynamics and DNA damage response. Researchers in the area of DNA damage response have witnessed rapid progress within the past decade, largely stimulated by the seminal findings that ubiquitination and SUMOylation of a key DNA replication/repair protein, proliferating cell nuclear antigen (PCNA), controls precisely how eukaryotic cells respond to different types of DNA damage, and how cellular DNA damage repair or tolerance pathways are selected to cope with damage in the DNA genome. Here, we will review the recent findings on translesion synthesis (TLS) and its regulation by PCNA ubiquitination in eukaryotes. We will discuss two prevalent models, i.e., the postreplicative gap-filling and the polymerase switch, which have been invoked to account for eukaryotic cells' ability to overcome DNA damage associated replication blockade through TLS. Results from both in vitro reconstitution and from genetic systems will be discussed. We will also summarize the recent findings revealing the crosstalk between two major human DNA damage response pathways (the TLS and the Fanconi anemia pathways), and the ATR and ATM-independent regulation of PCNA ubiquitination. Lastly, new methods of preparing ubiquitinated PCNA will be reviewed. The availability of milligram levels of ubiquitinated PCNA will help our understanding of the molecular details in eukaryotic TLS.
泛素和泛素样蛋白(Ubls)在分子和细胞生物学中处于中心地位,因为它们在许多基本重要的细胞过程中具有多种功能。除了泛素在 26S 蛋白酶体介导的蛋白质降解途径中的著名作用外,泛素的非蛋白水解功能也在迅速被揭示。突出的例子包括膜运输、先天免疫、激酶信号转导、染色质动力学和 DNA 损伤反应。在 DNA 损伤反应领域的研究人员在过去十年中见证了快速的进展,这主要是由于泛素化和 SUMO 化关键 DNA 复制/修复蛋白增殖细胞核抗原(PCNA)的开创性发现,这些发现精确地控制着真核细胞如何对不同类型的 DNA 损伤作出反应,以及细胞 DNA 损伤修复或耐受途径如何被选择来应对 DNA 基因组中的损伤。在这里,我们将回顾近年来在真核生物中转录后合成(TLS)及其通过 PCNA 泛素化的调控方面的发现。我们将讨论两种流行的模型,即复制后间隙填充和聚合酶转换,这两种模型被用来解释真核细胞通过 TLS 克服与复制阻滞相关的 DNA 损伤的能力。将讨论来自体外重构和遗传系统的结果。我们还将总结最近的发现,揭示了两种主要的人类 DNA 损伤反应途径(TLS 和范可尼贫血途径)之间的串扰,以及 ATR 和 ATM 对 PCNA 泛素化的非依赖性调控。最后,将综述制备泛素化 PCNA 的新方法。毫克级泛素化 PCNA 的可用性将有助于我们理解真核细胞 TLS 中的分子细节。