Suppr超能文献

通过动力学同位素效应研究揭示细胞色素c氧化酶中的质子转运机制。

Proton-transport mechanisms in cytochrome c oxidase revealed by studies of kinetic isotope effects.

作者信息

Johansson Ann-Louise, Chakrabarty Suman, Berthold Catrine L, Högbom Martin, Warshel Arieh, Brzezinski Peter

机构信息

Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden.

出版信息

Biochim Biophys Acta. 2011 Sep;1807(9):1083-94. doi: 10.1016/j.bbabio.2011.03.012. Epub 2011 Apr 2.

Abstract

Cytochrome c oxidase (CytcO) is a membrane-bound enzyme, which catalyzes the reduction of di-oxygen to water and uses a major part of the free energy released in this reaction to pump protons across the membrane. In the Rhodobacter sphaeroides aa₃ CytcO all protons that are pumped across the membrane, as well as one half of the protons that are used for O₂ reduction, are transferred through one specific intraprotein proton pathway, which holds a highly conserved Glu286 residue. Key questions that need to be addressed in order to understand the function of CytcO at a molecular level are related to the timing of proton transfers from Glu286 to a "pump site" and the catalytic site, respectively. Here, we have investigated the temperature dependencies of the H/D kinetic-isotope effects of intramolecular proton-transfer reactions in the wild-type CytcO as well as in two structural CytcO variants, one in which proton uptake from solution is delayed and one in which proton pumping is uncoupled from O₂ reduction. These processes were studied for two specific reaction steps linked to transmembrane proton pumping, one that involves only proton transfer (peroxy-ferryl, P→F, transition) and one in which the same sequence of proton transfers is also linked to electron transfer to the catalytic site (ferryl-oxidized, F→O, transition). An analysis of these reactions in the framework of theory indicates that that the simpler, P→F reaction is rate-limited by proton transfer from Glu286 to the catalytic site. When the same proton-transfer events are also linked to electron transfer to the catalytic site (F→O), the proton-transfer reactions might well be gated by a protein structural change, which presumably ensures that the proton-pumping stoichiometry is maintained also in the presence of a transmembrane electrochemical gradient. Furthermore, the present study indicates that a careful analysis of the temperature dependence of the isotope effect should help us in gaining mechanistic insights about CytcO.

摘要

细胞色素c氧化酶(CytcO)是一种膜结合酶,它催化将双氧还原为水,并利用该反应释放的大部分自由能将质子泵过膜。在球形红细菌aa₃ CytcO中,所有泵过膜的质子以及用于O₂还原的一半质子,都是通过一条特定的蛋白质内质子途径转移的,该途径含有一个高度保守的Glu286残基。为了在分子水平上理解CytcO的功能,需要解决的关键问题分别与质子从Glu286转移到“泵位点”和催化位点的时间有关。在这里,我们研究了野生型CytcO以及两种结构CytcO变体中分子内质子转移反应的H/D动力学同位素效应的温度依赖性,其中一种变体中从溶液中摄取质子被延迟,另一种变体中质子泵浦与O₂还原解偶联。针对与跨膜质子泵浦相关的两个特定反应步骤研究了这些过程,一个步骤仅涉及质子转移(过氧 - 高铁,P→F,转变),另一个步骤中相同的质子转移序列也与向催化位点的电子转移相关(高铁 - 氧化,F→O,转变)。在理论框架内对这些反应的分析表明,更简单的P→F反应受质子从Glu286转移到催化位点的速率限制。当相同的质子转移事件也与向催化位点的电子转移相关(F→O)时,质子转移反应很可能由蛋白质结构变化控制,这大概确保了在存在跨膜电化学梯度的情况下也能维持质子泵浦化学计量。此外,本研究表明,仔细分析同位素效应的温度依赖性应有助于我们深入了解CytcO的机制。

相似文献

1
Proton-transport mechanisms in cytochrome c oxidase revealed by studies of kinetic isotope effects.
Biochim Biophys Acta. 2011 Sep;1807(9):1083-94. doi: 10.1016/j.bbabio.2011.03.012. Epub 2011 Apr 2.
2
Intricate role of water in proton transport through cytochrome c oxidase.
J Am Chem Soc. 2010 Nov 17;132(45):16225-39. doi: 10.1021/ja107244g. Epub 2010 Oct 21.
3
Variable proton-pumping stoichiometry in structural variants of cytochrome c oxidase.
Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):710-23. doi: 10.1016/j.bbabio.2010.02.020. Epub 2010 Feb 23.
4
A pathogenic mutation in cytochrome c oxidase results in impaired proton pumping while retaining O(2)-reduction activity.
Biochim Biophys Acta. 2010 May;1797(5):550-6. doi: 10.1016/j.bbabio.2010.01.027. Epub 2010 Feb 1.
5
Proton-transfer pathways in the mitochondrial S. cerevisiae cytochrome c oxidase.
Sci Rep. 2019 Dec 27;9(1):20207. doi: 10.1038/s41598-019-56648-9.
7
A mechanistic principle for proton pumping by cytochrome c oxidase.
Nature. 2005 Sep 8;437(7056):286-9. doi: 10.1038/nature03921.
8
Charge transfer in the K proton pathway linked to electron transfer to the catalytic site in cytochrome c oxidase.
Biochemistry. 2008 Apr 29;47(17):4929-35. doi: 10.1021/bi7024707. Epub 2008 Apr 5.
10
Deuterium isotope effect of proton pumping in cytochrome c oxidase.
Biochim Biophys Acta. 2008 Apr;1777(4):343-50. doi: 10.1016/j.bbabio.2007.09.009. Epub 2007 Oct 6.

引用本文的文献

1
Structural and functional mechanisms of cytochrome c oxidase.
J Inorg Biochem. 2025 Jan;262:112730. doi: 10.1016/j.jinorgbio.2024.112730. Epub 2024 Sep 8.
2
The proton pumping bo oxidase from Vitreoscilla.
Sci Rep. 2019 Mar 18;9(1):4766. doi: 10.1038/s41598-019-40723-2.
3
The regulation of oxidative phosphorylation pathway on Vibrio alginolyticus adhesion under adversities.
Microbiologyopen. 2019 Aug;8(8):e00805. doi: 10.1002/mbo3.805. Epub 2019 Feb 14.
4
Dewetting transitions coupled to K-channel activation in cytochrome oxidase.
Chem Sci. 2018 Jul 9;9(32):6703-6710. doi: 10.1039/c8sc01587b. eCollection 2018 Aug 28.
5
Origin of the Non-Arrhenius Behavior of the Rates of Enzymatic Reactions.
J Phys Chem B. 2017 Jul 13;121(27):6520-6526. doi: 10.1021/acs.jpcb.7b03698. Epub 2017 Jul 5.
6
Multiscale simulations reveal key features of the proton-pumping mechanism in cytochrome c oxidase.
Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):7420-5. doi: 10.1073/pnas.1601982113. Epub 2016 Jun 23.
7
Structural Changes and Proton Transfer in Cytochrome c Oxidase.
Sci Rep. 2015 Aug 27;5:12047. doi: 10.1038/srep12047.
8
Kinetic and vibrational isotope effects of proton transfer reactions in channelrhodopsin-2.
Biophys J. 2015 Jul 21;109(2):287-97. doi: 10.1016/j.bpj.2015.06.023.
9
Mutation of a single residue in the ba3 oxidase specifically impairs protonation of the pump site.
Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):3397-402. doi: 10.1073/pnas.1422434112. Epub 2015 Mar 2.
10
Characterizing the proton loading site in cytochrome c oxidase.
Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):12414-9. doi: 10.1073/pnas.1407187111. Epub 2014 Aug 11.

本文引用的文献

1
Exploration of the cytochrome c oxidase pathway puzzle and examination of the origin of elusive mutational effects.
Biochim Biophys Acta. 2011 Apr;1807(4):413-26. doi: 10.1016/j.bbabio.2011.01.004. Epub 2011 Jan 10.
2
Variable proton-pumping stoichiometry in structural variants of cytochrome c oxidase.
Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):710-23. doi: 10.1016/j.bbabio.2010.02.020. Epub 2010 Feb 23.
4
Functional hydration and conformational gating of proton uptake in cytochrome c oxidase.
J Mol Biol. 2009 Apr 17;387(5):1165-85. doi: 10.1016/j.jmb.2009.02.042. Epub 2009 Feb 24.
5
Cytochrome c oxidase: exciting progress and remaining mysteries.
J Bioenerg Biomembr. 2008 Oct;40(5):521-31. doi: 10.1007/s10863-008-9181-7. Epub 2008 Oct 31.
7
The proton donor for O-O bond scission by cytochrome c oxidase.
Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10733-7. doi: 10.1073/pnas.0802512105. Epub 2008 Jul 29.
8
Theoretical and computational analysis of the membrane potential generated by cytochrome c oxidase upon single electron injection into the enzyme.
Biochim Biophys Acta. 2008 Sep;1777(9):1129-39. doi: 10.1016/j.bbabio.2008.05.006. Epub 2008 May 19.
9
Electrostatic basis for the unidirectionality of the primary proton transfer in cytochrome c oxidase.
Proc Natl Acad Sci U S A. 2008 Jun 3;105(22):7726-31. doi: 10.1073/pnas.0800580105. Epub 2008 May 28.
10
Deuterium isotope effect of proton pumping in cytochrome c oxidase.
Biochim Biophys Acta. 2008 Apr;1777(4):343-50. doi: 10.1016/j.bbabio.2007.09.009. Epub 2007 Oct 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验