Suppr超能文献

细胞色素c氧化酶中初级质子转移单向性的静电基础。

Electrostatic basis for the unidirectionality of the primary proton transfer in cytochrome c oxidase.

作者信息

Pisliakov Andrei V, Sharma Pankaz K, Chu Zhen T, Haranczyk Maciej, Warshel Arieh

机构信息

Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Avenue, Los Angeles, CA 90089-1062, USA.

出版信息

Proc Natl Acad Sci U S A. 2008 Jun 3;105(22):7726-31. doi: 10.1073/pnas.0800580105. Epub 2008 May 28.

Abstract

Gaining detailed understanding of the energetics of the proton-pumping process in cytochrome c oxidase (CcO) is one of the challenges of modern biophysics. Despite promising mechanistic proposals, most works have not related the activation barriers of the different assumed steps to the protein structure, and there has not been a physically consistent model that reproduced the barriers needed to create a working pump. This work reevaluates the activation barriers for the primary proton transfer (PT) steps by calculations that reflect all relevant free energy contributions, including the electrostatic energies of the generated charges, the energies of water insertion, and large structural rearrangements of the donor and acceptor. The calculations have reproduced barriers that account for the directionality and sequence of events in the primary PT in CcO. It has also been found that the PT from Glu-286 (E) to the propionate of heme a(3) (Prd) provides a gate for an initial back leakage from the high pH side of the membrane. Interestingly, the rotation of E that brings it closer to Prd appears to provide a way for blocking competing pathways in the primary PT. Our study elucidates and quantifies the nature of the control of the directionality in the primary PT in CcO and provides instructive insight into the role of the water molecules in biological PT, showing that "bridges" of several water molecules in hydrophobic regions present a problem (rather than a solution) that is minimized in the primary PT.

摘要

深入了解细胞色素c氧化酶(CcO)中质子泵浦过程的能量学是现代生物物理学面临的挑战之一。尽管有一些很有前景的机理推测,但大多数研究并未将不同假设步骤的活化能垒与蛋白质结构联系起来,而且还没有一个物理上自洽的模型能够重现形成一个工作泵所需的能垒。这项工作通过计算重新评估了初级质子转移(PT)步骤的活化能垒,这些计算反映了所有相关的自由能贡献,包括所产生电荷的静电能、水插入的能量以及供体和受体的大结构重排。这些计算重现了能垒,这些能垒解释了CcO中初级PT事件的方向性和顺序。还发现从Glu-286(E)到血红素a3(Prd)的丙酸酯的PT为膜高pH侧的初始反向泄漏提供了一个通道。有趣的是,E的旋转使其更接近Prd,这似乎为阻断初级PT中的竞争途径提供了一种方式。我们的研究阐明并量化了CcO中初级PT方向性控制的本质,并为水分子在生物PT中的作用提供了有启发性的见解,表明疏水区域中几个水分子的“桥”带来了一个问题(而非解决方案),而在初级PT中这个问题被最小化了。

相似文献

引用本文的文献

4
Electric fields control water-gated proton transfer in cytochrome oxidase.电场控制细胞色素氧化酶中的水门控质子转移。
Proc Natl Acad Sci U S A. 2022 Sep 20;119(38):e2207761119. doi: 10.1073/pnas.2207761119. Epub 2022 Sep 12.
7
On the control of the proton current in the voltage-gated proton channel Hv1.在电压门控质子通道 Hv1 中质子电流的控制。
Proc Natl Acad Sci U S A. 2018 Oct 9;115(41):10321-10326. doi: 10.1073/pnas.1809766115. Epub 2018 Sep 25.
8
Redox-Driven Proton Pumps of the Respiratory Chain.氧化还原驱动的呼吸链质子泵。
Biophys J. 2018 Sep 4;115(5):830-840. doi: 10.1016/j.bpj.2018.07.022. Epub 2018 Aug 2.
9
Cavity hydration dynamics in cytochrome oxidase and functional implications.细胞色素氧化酶中的腔水合动力学及其功能意义。
Proc Natl Acad Sci U S A. 2017 Oct 17;114(42):E8830-E8836. doi: 10.1073/pnas.1707922114. Epub 2017 Oct 2.

本文引用的文献

1
Deuterium isotope effect of proton pumping in cytochrome c oxidase.细胞色素c氧化酶中质子泵浦的氘同位素效应
Biochim Biophys Acta. 2008 Apr;1777(4):343-50. doi: 10.1016/j.bbabio.2007.09.009. Epub 2007 Oct 6.
4
Energy diagrams and mechanism for proton pumping in cytochrome c oxidase.细胞色素c氧化酶中质子泵浦的能量图及机制。
Biochim Biophys Acta. 2007 Sep;1767(9):1143-56. doi: 10.1016/j.bbabio.2007.06.009. Epub 2007 Jul 12.
6
Kinetic models of redox-coupled proton pumping.氧化还原偶联质子泵浦的动力学模型。
Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2169-74. doi: 10.1073/pnas.0611114104. Epub 2007 Feb 7.
7
Modeling electrostatic effects in proteins.蛋白质中静电效应的建模
Biochim Biophys Acta. 2006 Nov;1764(11):1647-76. doi: 10.1016/j.bbapap.2006.08.007. Epub 2006 Aug 25.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验