Suppr超能文献

关于脑容量异常的文献中存在的过度显著性偏差。

Excess significance bias in the literature on brain volume abnormalities.

作者信息

Ioannidis John P A

机构信息

Clinical and Molecular Epidemiology Unit, Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, and Biomedical Research Institute, Foundation for Research and Technology–Hellas, Ioannina, Greece.

出版信息

Arch Gen Psychiatry. 2011 Aug;68(8):773-80. doi: 10.1001/archgenpsychiatry.2011.28. Epub 2011 Apr 4.

Abstract

CONTEXT

Many studies report volume abnormalities in diverse brain structures in patients with various mental health conditions.

OBJECTIVE

To evaluate whether there is evidence for an excess number of statistically significant results in studies of brain volume abnormalities that suggest the presence of bias in the literature.

DATA SOURCES

PubMed (articles published from January 2006 to December 2009).

STUDY SELECTION

Recent meta-analyses of brain volume abnormalities in participants with various mental health conditions vs control participants with 6 or more data sets included, excluding voxel-based morphometry.

DATA EXTRACTION

Standardized effect sizes were extracted in each data set, and it was noted whether the results were "positive" (P < .05) or not. For each data set in each meta-analysis, I estimated the power to detect at α = .05 an effect equal to the summary effect of the respective meta-analysis. The sum of the power estimates gives the number of expected positive data sets. The expected number of positive data sets can then be compared against the observed number.

DATA SYNTHESIS

From 8 articles, 41 meta-analyses with 461 data sets were evaluated (median, 10 data sets per meta-analysis) pertaining to 7 conditions. Twenty-one of the 41 meta-analyses had found statistically significant associations, and 142 of 461 (31%) data sets had positive results. Even if the summary effect sizes of the meta-analyses were unbiased, the expected number of positive results would have been only 78.5 compared with the observed number of 142 (P < .001).

CONCLUSION

There are too many studies with statistically significant results in the literature on brain volume abnormalities. This pattern suggests strong biases in the literature, with selective outcome reporting and selective analyses reporting being possible explanations.

摘要

背景

许多研究报告了患有各种心理健康状况的患者在不同脑结构中的体积异常。

目的

评估在脑体积异常研究中是否存在证据表明存在过多具有统计学意义的结果,这表明文献中存在偏差。

数据来源

PubMed(2006年1月至2009年12月发表的文章)。

研究选择

对患有各种心理健康状况的参与者与对照组参与者进行的脑体积异常的近期荟萃分析,纳入6个或更多数据集,不包括基于体素的形态测量学。

数据提取

在每个数据集中提取标准化效应量,并记录结果是否为“阳性”(P <.05)。对于每个荟萃分析中的每个数据集,我估计了在α =.05水平下检测到等于相应荟萃分析汇总效应的效应的功效。功效估计值的总和给出了预期阳性数据集的数量。然后可以将预期阳性数据集的数量与观察到的数量进行比较。

数据综合

从8篇文章中,评估了与7种状况相关的41项荟萃分析,共461个数据集(中位数,每项荟萃分析10个数据集)。41项荟萃分析中有21项发现了具有统计学意义的关联,461个数据集中有142个(31%)结果为阳性。即使荟萃分析的汇总效应量无偏差,与观察到的142个相比,预期阳性结果数量也仅为78.5(P <.001)。

结论

关于脑体积异常的文献中有太多研究具有统计学意义的结果。这种模式表明文献中存在强烈的偏差,选择性结果报告和选择性分析报告可能是解释原因。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验