Suppr超能文献

Hog1 丝裂原活化蛋白激酶介导酿酒酵母的低氧应答。

The Hog1 mitogen-activated protein kinase mediates a hypoxic response in Saccharomyces cerevisiae.

机构信息

Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.

出版信息

Genetics. 2011 Jun;188(2):325-38. doi: 10.1534/genetics.111.128322. Epub 2011 Apr 5.

Abstract

We have studied hypoxic induction of transcription by studying the seripauperin (PAU) genes of Saccharomyces cerevisiae. Previous studies showed that PAU induction requires the depletion of heme and is dependent upon the transcription factor Upc2. We have now identified additional factors required for PAU induction during hypoxia, including Hog1, a mitogen-activated protein kinase (MAPK) whose signaling pathway originates at the membrane. Our results have led to a model in which heme and ergosterol depletion alters membrane fluidity, thereby activating Hog1 for hypoxic induction. Hypoxic activation of Hog1 is distinct from its previously characterized response to osmotic stress, as the two conditions cause different transcriptional consequences. Furthermore, Hog1-dependent hypoxic activation is independent of the S. cerevisiae general stress response. In addition to Hog1, specific components of the SAGA coactivator complex, including Spt20 and Sgf73, are also required for PAU induction. Interestingly, the mammalian ortholog of Spt20, p38IP, has been previously shown to interact with the mammalian ortholog of Hog1, p38. Taken together, our results have uncovered a previously unknown hypoxic-response pathway that may be conserved throughout eukaryotes.

摘要

我们通过研究酿酒酵母的 seripauperin(PAU)基因来研究缺氧诱导转录。先前的研究表明,PAU 的诱导需要耗尽血红素,并且依赖于转录因子 Upc2。我们现在已经确定了缺氧期间 PAU 诱导所需的其他因素,包括 Hog1,一种丝裂原激活蛋白激酶(MAPK),其信号通路起源于膜。我们的结果提出了一个模型,即血红素和麦角固醇的耗竭会改变膜的流动性,从而激活 Hog1 进行缺氧诱导。Hog1 的缺氧激活与先前表征的其对渗透压胁迫的反应不同,因为这两种情况会导致不同的转录后果。此外,Hog1 依赖性的缺氧激活与酿酒酵母的一般应激反应无关。除了 Hog1 之外,SAGA 共激活复合物的特定成分,包括 Spt20 和 Sgf73,也需要进行 PAU 诱导。有趣的是,Spt20 的哺乳动物同源物 p38IP 先前已被证明与 Hog1 的哺乳动物同源物 p38 相互作用。总之,我们的研究结果揭示了一个以前未知的缺氧反应途径,该途径可能在真核生物中保守。

相似文献

1
The Hog1 mitogen-activated protein kinase mediates a hypoxic response in Saccharomyces cerevisiae.
Genetics. 2011 Jun;188(2):325-38. doi: 10.1534/genetics.111.128322. Epub 2011 Apr 5.
4
The MAPK Hog1 recruits Rpd3 histone deacetylase to activate osmoresponsive genes.
Nature. 2004 Jan 22;427(6972):370-4. doi: 10.1038/nature02258.
5
Unique and redundant roles for HOG MAPK pathway components as revealed by whole-genome expression analysis.
Mol Biol Cell. 2004 Feb;15(2):532-42. doi: 10.1091/mbc.e03-07-0521. Epub 2003 Oct 31.
7
Nut1/Hos1 and Sas2/Rpd3 control the H3 acetylation of two different sets of osmotic stress-induced genes.
Epigenetics. 2020 Mar;15(3):251-271. doi: 10.1080/15592294.2019.1664229. Epub 2019 Sep 12.
8
Hog1 controls global reallocation of RNA Pol II upon osmotic shock in Saccharomyces cerevisiae.
G3 (Bethesda). 2012 Sep;2(9):1129-36. doi: 10.1534/g3.112.003251. Epub 2012 Sep 1.

引用本文的文献

1
The relationship mammalian p38 with human health and its homolog Hog1 in response to environmental stresses in .
Front Cell Dev Biol. 2025 Mar 10;13:1522294. doi: 10.3389/fcell.2025.1522294. eCollection 2025.
2
Mechanism of enhanced salt tolerance in Saccharomyces cerevisiae by CRZ1 overexpression.
Sci Rep. 2024 Oct 2;14(1):22875. doi: 10.1038/s41598-024-74174-1.
3
Agar lot-specific inhibition in the plating efficiency of yeast spores and cells.
G3 (Bethesda). 2024 Sep 23;14(12). doi: 10.1093/g3journal/jkae229.
4
The role of the glycerol transporter channel Fps1p in cellular proteostasis during enhanced proteotoxic stress.
Appl Microbiol Biotechnol. 2022 Sep;106(18):6169-6180. doi: 10.1007/s00253-022-12118-3. Epub 2022 Aug 10.
5
Spt20, a Structural Subunit of the SAGA Complex, Regulates Aspergillus fumigatus Biofilm Formation, Asexual Development, and Virulence.
Appl Environ Microbiol. 2022 Jan 11;88(1):e0153521. doi: 10.1128/AEM.01535-21. Epub 2021 Oct 20.
6
Loss of major nutrient sensing and signaling pathways suppresses starvation lethality in electron transport chain mutants.
Mol Biol Cell. 2021 Dec 1;32(22):ar39. doi: 10.1091/mbc.E21-06-0314. Epub 2021 Oct 20.
7
Set4 regulates stress response genes and coordinates histone deacetylases within yeast subtelomeres.
Life Sci Alliance. 2021 Oct 8;4(12). doi: 10.26508/lsa.202101126. Print 2021 Dec.
9
Revisiting the Vital Drivers and Mechanisms of β-Glucan Masking in Human Fungal Pathogen, .
Pathogens. 2021 Jul 27;10(8):942. doi: 10.3390/pathogens10080942.

本文引用的文献

1
Dynamics of Sir3 spreading in budding yeast: secondary recruitment sites and euchromatic localization.
EMBO J. 2011 Mar 16;30(6):1012-26. doi: 10.1038/emboj.2011.30. Epub 2011 Feb 18.
3
The structural plasticity of SCA7 domains defines their differential nucleosome-binding properties.
EMBO Rep. 2010 Aug;11(8):612-8. doi: 10.1038/embor.2010.98. Epub 2010 Jul 16.
4
Structural basis for assembly and activation of the heterotetrameric SAGA histone H2B deubiquitinase module.
Cell. 2010 May 14;141(4):606-17. doi: 10.1016/j.cell.2010.04.026. Epub 2010 Apr 29.
5
Structural insights into the assembly and function of the SAGA deubiquitinating module.
Science. 2010 May 21;328(5981):1025-9. doi: 10.1126/science.1190049. Epub 2010 Apr 15.
6
Multiple faces of the SAGA complex.
Curr Opin Cell Biol. 2010 Jun;22(3):374-82. doi: 10.1016/j.ceb.2010.03.005. Epub 2010 Apr 2.
7
Multilayered control of gene expression by stress-activated protein kinases.
EMBO J. 2010 Jan 6;29(1):4-13. doi: 10.1038/emboj.2009.346. Epub 2009 Nov 26.
8
Functional analyses of PAU genes in Saccharomyces cerevisiae.
Microbiology (Reading). 2009 Dec;155(Pt 12):4036-4049. doi: 10.1099/mic.0.030726-0. Epub 2009 Sep 17.
10
Insights into SAGA function during gene expression.
EMBO Rep. 2009 Aug;10(8):843-50. doi: 10.1038/embor.2009.168. Epub 2009 Jul 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验