Suppr超能文献

通过过表达CRZ1增强酿酒酵母耐盐性的机制。

Mechanism of enhanced salt tolerance in Saccharomyces cerevisiae by CRZ1 overexpression.

作者信息

Zuo Furong, Wu Yajing, Sun Yanqiu, Xie Caiyun, Tang Yueqin

机构信息

College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China.

Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, Chengdu, 610065, Sichuan, China.

出版信息

Sci Rep. 2024 Oct 2;14(1):22875. doi: 10.1038/s41598-024-74174-1.

Abstract

Achieving high-gravity fermentation in the industrial production of fuel ethanol, and enhancing the fermentation efficiency of high-salt raw materials, such as waste molasses, can significantly reduce wastewater output and process costs. Therefore, the development of hyperosmotic-tolerant industrial Saccharomyces cerevisiae strains, capable of resisting high-salt stress, offers both environmental and economic benefits. Our previous study highlighted the potential of CRZ1 overexpression as a strategy to improve the yeast strain's resistance to high-salt stress, however, the underlying molecular mechanisms remain unexplored. The fermentation capabilities of the CRZ1-overexpressing strain, KCR3, and its parental strain, KF7, were evaluated under condition of 1.25 M NaCl at 35 °C. Compared to KF7, KCR3 showed an 81% increase in glucose consumption (129.25 ± 0.83 g/L) and a 105% increase in ethanol production (47.59 ± 0.93 g/L), with a yield of 0.37 g/g. Comparative transcriptomic analysis showed that under high-salt stress, KCR3 exhibited significantly upregulated expression of genes associated with ion transport, stress response, gluconeogenesis, and the utilization of alternative carbon sources, while genes related to glycolysis and the biosynthesis of ribosomes, amino acids, and fatty acids were notably downregulated compared to KF7. Crz1 likely expands its influence by regulating the expression of numerous transcription factors, thereby impacting genes involved in multiple aspects of cellular function. The study revealed the regulatory mechanism of Crz1 under high-salt stress, thereby providing guidance for the construction of salt-tolerant strains.

摘要

在燃料乙醇的工业生产中实现高浓度发酵,并提高高盐原料(如废糖蜜)的发酵效率,可显著减少废水排放和加工成本。因此,开发能够耐受高盐胁迫的工业酿酒酵母菌株具有环境和经济效益。我们之前的研究强调了过表达CRZ1作为提高酵母菌株对高盐胁迫抗性的一种策略的潜力,然而,其潜在的分子机制仍未得到探索。在35℃、1.25 M NaCl条件下评估了过表达CRZ1的菌株KCR3及其亲本菌株KF7的发酵能力。与KF7相比,KCR3的葡萄糖消耗量增加了81%(129.25±0.83 g/L),乙醇产量增加了105%(47.59±0.93 g/L),产率为0.37 g/g。比较转录组分析表明,在高盐胁迫下,KCR3中与离子转运、应激反应、糖异生和替代碳源利用相关的基因表达显著上调,而与糖酵解以及核糖体、氨基酸和脂肪酸生物合成相关的基因与KF7相比显著下调。Crz1可能通过调节众多转录因子的表达来扩大其影响,从而影响涉及细胞功能多个方面的基因。该研究揭示了高盐胁迫下Crz1的调控机制,从而为耐盐菌株的构建提供指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8022/11447063/6b15ace9e8d8/41598_2024_74174_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验