Department of Chemistry, Shahid-Bahonar University of Kerman, Kerman, Iran.
J Phys Chem A. 2011 May 5;115(17):4263-9. doi: 10.1021/jp200216b. Epub 2011 Apr 6.
The triplet potential energy surface of the O((3)P) + CS(2) reaction is investigated by using various quantum chemical methods including CCSD(T), QCISD(T), CCSD, QCISD, G3B3, MPWB1K, BB1K, MP2, and B3LYP. The thermal rate coefficients for the formation of three major products, CS + SO ((3)Σ(-)), OCS + S ((3)P) and CO + S(2) ((3)Σ(-)(g)) were computed by using transition state and RRKM statistical rate theories over the temperature range of 200-2000 K. The computed k(SO + CS) by using high-level quantum chemical methods is in accordance with the available experimental data. The calculated rate coefficients for the formation of OCS + S ((3)P) and CO + S(2) ((3)Σ(-)(g)) are much lower than k(SO + CS); hence, it is predicted that these two product channels do not contribute significantly to the overall rate coefficient.
三重态势能面的 O((3)P) + CS(2) 反应是通过使用各种量子化学方法进行研究,包括 CCSD(T)、QCISD(T)、CCSD、QCISD、G3B3、MPWB1K、BB1K、MP2 和 B3LYP。通过过渡态和 RRKM 统计速率理论,在 200-2000 K 的温度范围内计算了形成三种主要产物 CS + SO ((3)Σ(-))、OCS + S ((3)P) 和 CO + S(2) ((3)Σ(-)(g))的热速率系数。使用高精度量子化学方法计算的 k(SO + CS)与现有实验数据一致。形成 OCS + S ((3)P) 和 CO + S(2) ((3)Σ(-)(g))的速率系数要低得多;因此,预计这两个产物通道对总速率系数没有显著贡献。