Suppr超能文献

一种用于寻找组合优化问题基本景观分解的方法。

A methodology to find the elementary landscape decomposition of combinatorial optimization problems.

机构信息

Departamento de Lenguajes y Ciencias de la Computación, Universidad de Málaga, Spain.

出版信息

Evol Comput. 2011 Winter;19(4):597-637. doi: 10.1162/EVCO_a_00039. Epub 2011 Sep 19.

Abstract

A small number of combinatorial optimization problems have search spaces that correspond to elementary landscapes, where the objective function f is an eigenfunction of the Laplacian that describes the neighborhood structure of the search space. Many problems are not elementary; however, the objective function of a combinatorial optimization problem can always be expressed as a superposition of multiple elementary landscapes if the underlying neighborhood used is symmetric. This paper presents theoretical results that provide the foundation for algebraic methods that can be used to decompose the objective function of an arbitrary combinatorial optimization problem into a sum of subfunctions, where each subfunction is an elementary landscape. Many steps of this process can be automated, and indeed a software tool could be developed that assists the researcher in finding a landscape decomposition. This methodology is then used to show that the subset sum problem is a superposition of two elementary landscapes, and to show that the quadratic assignment problem is a superposition of three elementary landscapes.

摘要

一小部分组合优化问题的搜索空间对应于基本景观,其中目标函数 f 是描述搜索空间邻域结构的拉普拉斯算子的本征函数。许多问题都不是基本的;然而,如果使用的基础邻域是对称的,则组合优化问题的目标函数总是可以表示为多个基本景观的叠加。本文提出了理论结果,为代数方法提供了基础,这些方法可以用于将任意组合优化问题的目标函数分解为子函数的和,其中每个子函数都是一个基本景观。这个过程的许多步骤都可以自动化,实际上可以开发一个软件工具来帮助研究人员找到景观分解。然后,该方法用于表明子集和问题是两个基本景观的叠加,并且表明二次分配问题是三个基本景观的叠加。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验