Suppr超能文献

基于秀丽隐杆线虫的抗真菌药物发现模型系统。

Caenorhabditis elegans-based model systems for antifungal drug discovery.

机构信息

Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.

出版信息

Curr Pharm Des. 2011;17(13):1225-33. doi: 10.2174/138161211795703753.

Abstract

The substantial morbidity and mortality associated with invasive fungal infections constitute undisputed tokens of their severity. The continued expansion of susceptible population groups (such as immunocompromised individuals, patients undergoing extensive surgery, and those hospitalized with serious underlying diseases especially in the intensive care unit) and the limitations of current antifungal agents due to toxicity issues or to the development of resistance, mandate the development of novel antifungal drugs. Currently, drug discovery is transitioning from the traditional in vitro large-scale screens of chemical libraries to more complex bioassays, including in vivo studies on whole animals; invertebrates, such as Caenorhabditis elegans, are thus gaining momentum as screening tools. Key pathogenesis features of fungal infections, including filament formation, are expressed in certain invertebrate and mammalian hosts; among the various potential hosts, C. elegans provides an attractive platform both for the study of host-pathogen interactions and the identification of new antifungal agents. Advantages of compound screening in this facile, relatively inexpensive and not as ethically challenged whole-animal context, include the simultaneous assessment of antifungal efficacy and toxicity that could result in the identification of compounds with distinct mechanisms of action, for example by promoting host immune responses or by impeding fungal virulence factors. With the recent advent of using predictive models to screen for compounds with improved chances of bioavailability in the nematode a priori, high-throughput screening of chemical libraries using the C. elegans-C. albicans antifungal discovery assay holds even greater promise for the identification of novel antifungal agents in the near future.

摘要

侵袭性真菌感染相关的高发病率和死亡率是其严重性的无可争议的标志。易感染人群的持续扩大(如免疫功能低下者、接受广泛手术的患者以及因严重基础疾病住院的患者,尤其是在重症监护病房)以及由于毒性问题或耐药性发展而导致当前抗真菌药物的局限性,都要求开发新型抗真菌药物。目前,药物发现正在从传统的大规模体外化学文库筛选向更复杂的生物测定方法转变,包括对整个动物进行体内研究;因此,秀丽隐杆线虫等无脊椎动物作为筛选工具正在得到越来越多的关注。真菌感染的关键发病特征,包括丝状形成,在某些无脊椎动物和哺乳动物宿主中表达;在各种潜在宿主中,秀丽隐杆线虫既是研究宿主-病原体相互作用的一个有吸引力的平台,也是鉴定新型抗真菌药物的一个有吸引力的平台。在这种简单、相对廉价且不存在伦理问题的整体动物环境中进行化合物筛选的优势包括同时评估抗真菌疗效和毒性,这可能导致鉴定具有不同作用机制的化合物,例如通过促进宿主免疫反应或阻碍真菌毒力因子。最近,使用预测模型来筛选在线虫中具有更高生物利用度的化合物的方法已经出现,使用秀丽隐杆线虫-白色念珠菌抗真菌发现测定法对化学文库进行高通量筛选,在不久的将来为鉴定新型抗真菌药物提供了更大的希望。

相似文献

1
Caenorhabditis elegans-based model systems for antifungal drug discovery.
Curr Pharm Des. 2011;17(13):1225-33. doi: 10.2174/138161211795703753.
2
Whole animal HTS of small molecules for antifungal compounds.
Expert Opin Drug Discov. 2016;11(2):177-84. doi: 10.1517/17460441.2016.1122591. Epub 2015 Dec 14.
3
Caenorhabditis elegans as a model animal for investigating fungal pathogenesis.
Med Microbiol Immunol. 2020 Feb;209(1):1-13. doi: 10.1007/s00430-019-00635-4. Epub 2019 Sep 25.
4
Antifungal drug discovery through the study of invertebrate model hosts.
Curr Med Chem. 2009;16(13):1588-95. doi: 10.2174/092986709788186237.
5
Antifungal chemical compounds identified using a C. elegans pathogenicity assay.
PLoS Pathog. 2007 Feb;3(2):e18. doi: 10.1371/journal.ppat.0030018.
6
Caenorhabditis elegans: a nematode infection model for pathogenic fungi.
Methods Mol Biol. 2012;845:447-54. doi: 10.1007/978-1-61779-539-8_31.
8
Tackling Fungal Resistance by Biofilm Inhibitors.
J Med Chem. 2017 Mar 23;60(6):2193-2211. doi: 10.1021/acs.jmedchem.6b01203. Epub 2017 Jan 23.
9
C. elegans: an all in one model for antimicrobial drug discovery.
Curr Drug Targets. 2011 Jun;12(7):967-77. doi: 10.2174/138945011795677854.
10
Invertebrate models of fungal infection.
Biochim Biophys Acta. 2013 Sep;1832(9):1378-83. doi: 10.1016/j.bbadis.2013.03.008. Epub 2013 Mar 19.

引用本文的文献

1
Procatechuic acid and protocatechuic aldehyde increase survival of after fungal infection and inhibit fungal virulence.
Front Pharmacol. 2024 May 22;15:1396733. doi: 10.3389/fphar.2024.1396733. eCollection 2024.
2
Assessment of Antifungal Pharmacodynamics.
J Fungi (Basel). 2023 Feb 1;9(2):192. doi: 10.3390/jof9020192.
4
Beneficial effect of Xuebijing against infection in .
Front Pharmacol. 2022 Aug 31;13:949608. doi: 10.3389/fphar.2022.949608. eCollection 2022.
5
Evaluation of antibacterial drug efficacy using infected with carbapenem-resistant as a model host.
Front Pharmacol. 2022 Aug 19;13:973551. doi: 10.3389/fphar.2022.973551. eCollection 2022.
6
ML1206 Isolated from Wild Oysters Enhances the Survival of against .
Mar Drugs. 2021 Mar 12;19(3):150. doi: 10.3390/md19030150.
7
Fluorescent toys 'n' tools lighting the way in fungal research.
FEMS Microbiol Rev. 2021 Sep 8;45(5). doi: 10.1093/femsre/fuab013.
9
Anti-MRSA agent discovery using Caenorhabditis elegans-based high-throughput screening.
J Microbiol. 2020 Jun;58(6):431-444. doi: 10.1007/s12275-020-0163-8. Epub 2020 May 27.

本文引用的文献

1
From the outside in and the inside out: Antifungal immune responses in Caenorhabditis elegans.
Virulence. 2010 May-Jun;1(3):111-2. doi: 10.4161/viru.1.3.11746.
3
An insight into the antifungal pipeline: selected new molecules and beyond.
Nat Rev Drug Discov. 2010 Sep;9(9):719-27. doi: 10.1038/nrd3074. Epub 2010 Aug 20.
4
Recognition and prevention of nosocomial invasive fungal infections in the intensive care unit.
Crit Care Med. 2010 Aug;38(8 Suppl):S380-7. doi: 10.1097/CCM.0b013e3181e6cf25.
5
Drug discovery: Know your chemical space.
Nat Chem Biol. 2010 Jul;6(7):482-3. doi: 10.1038/nchembio.395.
6
A predictive model for drug bioaccumulation and bioactivity in Caenorhabditis elegans.
Nat Chem Biol. 2010 Jul;6(7):549-57. doi: 10.1038/nchembio.380. Epub 2010 May 30.
7
8
Natural products as antifungal agents against clinically relevant pathogens.
Nat Prod Rep. 2010 Jul;27(7):1084-98. doi: 10.1039/b914961a. Epub 2010 May 18.
9
Discovery of a highly synergistic anthelmintic combination that shows mutual hypersusceptibility.
Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):5955-60. doi: 10.1073/pnas.0912327107. Epub 2010 Mar 15.
10
Role of filamentation in Galleria mellonella killing by Candida albicans.
Microbes Infect. 2010 Jun;12(6):488-96. doi: 10.1016/j.micinf.2010.03.001. Epub 2010 Mar 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验