Suppr超能文献

药物研发中hERG通道阻滞剂的计算机模拟预测:从基于配体和基于靶点的方法到系统化化学生物学

In silico predictions of hERG channel blockers in drug discovery: from ligand-based and target-based approaches to systems chemical biology.

作者信息

Taboureau Olivier, Jørgensen Flemming Steen

机构信息

Center for Biological Sequences Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark.

出版信息

Comb Chem High Throughput Screen. 2011 Jun 1;14(5):375-87. doi: 10.2174/138620711795508322.

Abstract

The risk for cardiotoxic side effects represents a major problem in clinical studies of drug candidates and regulatory agencies have explicitly recommended that all new drug candidates should be tested for blockage of the human Ether-a-go-go Related-Gene (hERG) potassium channel. Indeed, several drugs with different therapeutic indications and recognized as hERG blockers were recently withdrawn due to the risk of QT prolongation, arrhythmia and Torsade de Pointes. In silico techniques can provide a priori knowledge of hERG blockers, thus reducing the costs associated with screening assays. Significant progress has been made in structure-based and ligand-based drug design and a number of models have been developed to predict hERG blockage. Although approaches such as homology modeling in combination with docking and molecular dynamics bring us closer to understand the drug-channel interactions whereas QSAR and classification models provide a faster assessment and detection of hERG-related drug toxicity, limitation on the applicability domain of the current models and integration of data from diverse in vitro approaches are still issues to challenge. Therefore, this review will emphasize on current methods to predict hERG blockers and the need of consistent data to improve the quality and performance of the in silico models. Finally, integration of network-based analysis on drugs inducing potentially long-QT syndrome and arrhythmia will be discussed as a new perspective for a better understanding of the drug responses in systems chemical biology.

摘要

心脏毒性副作用的风险是候选药物临床研究中的一个主要问题,监管机构已明确建议,所有新的候选药物都应进行人类醚 - 去极化相关基因(hERG)钾通道阻断测试。事实上,最近有几种具有不同治疗适应症且被认定为hERG阻滞剂的药物因存在QT间期延长、心律失常和尖端扭转型室速的风险而被撤回。计算机模拟技术可以提供hERG阻滞剂的先验知识,从而降低与筛选试验相关的成本。基于结构和基于配体的药物设计已取得显著进展,并且已经开发了许多模型来预测hERG阻断。尽管诸如同源建模与对接和分子动力学相结合的方法使我们更接近理解药物与通道的相互作用,而定量构效关系(QSAR)和分类模型提供了对hERG相关药物毒性的更快评估和检测,但当前模型适用范围的局限性以及来自不同体外方法的数据整合仍然是有待挑战的问题。因此,本综述将重点关注预测hERG阻滞剂的当前方法以及获取一致数据以提高计算机模拟模型质量和性能的必要性。最后,将讨论基于网络的对诱导潜在长QT综合征和心律失常药物的分析整合,作为系统化学生物学中更好理解药物反应的一个新视角。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验