Department of Cell & Systems Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3G5, Canada.
J Neurosci. 2011 Apr 6;31(14):5512-25. doi: 10.1523/JNEUROSCI.5548-10.2011.
An imbalance in dopamine-mediated neurotransmission is a hallmark physiological feature of neuropsychiatric disorders, such as schizophrenia. Recent evidence demonstrates that dopamine D(2) receptors, which are the main target of antipsychotics, modulate the activity of the protein kinase Akt, which is known to be downregulated in the brain of patients with schizophrenia. Akt has an important role in the regulation of cellular processes that are critical for neurodevelopment, including gene transcription, cell proliferation, and neuronal migration. Thus, it is possible that during brain development, altered Akt-dependent dopamine signaling itself may lead to defects in neural circuit formation. Here, we used a zebrafish model to assess the direct impact of altered dopamine signaling on brain development and larval motor behavior. We demonstrate that D(2) receptor activation acutely suppresses Akt activity by decreasing the level of pAkt(Thr308) in the larval zebrafish brain. This D(2)-dependent reduction in Akt activity negatively regulates larval movement and is distinct from a D(1)-dependent pathway with opposing affects on motor behavior. In addition, we show that D(2)-dependent suppression of Akt activity causes a late onset change in GSK3b activity, a known downstream target of Akt signaling. Finally, altered D(2) receptor signaling, or direct inhibition of Akt activity, causes a significant decrease in the size of the GABAergic neuron population throughout most of the brain. Our observations suggest that D(2) receptor signaling suppresses Akt-GSK3b activity, which regulates GABAergic neuron development and motor behavior.
多巴胺能神经递质传递的失衡是神经精神疾病(如精神分裂症)的一个主要生理特征。最近的证据表明,多巴胺 D2 受体是抗精神病药物的主要靶点,它调节蛋白激酶 Akt 的活性,而 Akt 在大脑中的活性在精神分裂症患者中被下调。Akt 在调节对神经发育至关重要的细胞过程中起着重要作用,包括基因转录、细胞增殖和神经元迁移。因此,在大脑发育过程中,改变的 Akt 依赖性多巴胺信号本身可能导致神经回路形成缺陷。在这里,我们使用斑马鱼模型来评估改变的多巴胺信号对大脑发育和幼虫运动行为的直接影响。我们证明 D2 受体的激活通过降低幼虫斑马鱼大脑中 pAkt(Thr308)的水平,急性抑制 Akt 的活性。这种 D2 依赖性 Akt 活性的降低负调节幼虫运动,与 D1 依赖性途径不同,后者对运动行为有相反的影响。此外,我们还表明,D2 依赖性 Akt 活性的抑制导致 Akt 信号下游的 GSK3b 活性的迟发性变化。最后,改变的 D2 受体信号或 Akt 活性的直接抑制会导致整个大脑中 GABA 能神经元群体的大小显著减少。我们的观察结果表明,D2 受体信号抑制 Akt-GSK3b 活性,调节 GABA 能神经元的发育和运动行为。