Suppr超能文献

离子通道工程的策略和展望。

Strategies and perspectives in ion-channel engineering.

机构信息

Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany.

出版信息

Chembiochem. 2011 Apr 11;12(6):830-9. doi: 10.1002/cbic.201000793.

Abstract

Membranes form natural barriers that need to be permeable to diverse matter like ions and substrates. This permeability is controlled by ion-channel proteins, which have attracted great interest for pharmaceutical applications. Ion-channel engineering (ICE) modifies biological ion channels by chemical/biological synthetis means. The goal is to obtain ion channels with modified or novel functionality. Three functional strategies exist. The first is the manipulation of the wider pores with robust β-barrel structures, such as those of α-hemolysin and porins. The second engineering approach focuses on the modification of narrow (mostly α-helical) pores to understand selectivity and modes of action. A third functional approach addresses channel gating by (photo)triggering the biological receptor that controls the channel. Several synthetis strategies have been developed and successfully utilized for the synthetic modification of biological ion-channels: the S-alkylation of specifically introduced Cys, protein semisynthesis by native chemical ligation, protein semisynthesis by protein trans-splicing, as well as nonsense-suppression methods. Structural studies (X-ray crystallography, NMR spectroscopy) are necessary to support the functional studies and to afford predictable engineering. The reprogramming and re-engineering of channels can be used for sensing applications, treatment of channelopathies, chemical neurobiology, and providing novel lead compounds for targeting ion channels.

摘要

细胞膜形成自然屏障,需要对离子和底物等多种物质具有通透性。这种通透性由离子通道蛋白控制,这些蛋白因其在药物应用方面的巨大潜力而受到广泛关注。离子通道工程(ICE)通过化学/生物合成手段对生物离子通道进行修饰。其目的是获得具有修饰或新颖功能的离子通道。目前存在三种功能策略。第一种策略是通过具有稳健β-桶结构的更宽孔来操纵,例如α-溶血素和孔蛋白的孔。第二种工程方法侧重于修饰狭窄(主要是α-螺旋)孔,以了解选择性和作用模式。第三种功能方法涉及通过(光)触发控制通道的生物受体来控制通道门控。已经开发并成功利用了几种合成策略来对生物离子通道进行合成修饰:专门引入的 Cys 的 S-烷基化、天然化学连接的蛋白质半合成、蛋白质转剪接的蛋白质半合成,以及无意义抑制方法。结构研究(X 射线晶体学、NMR 光谱学)对于支持功能研究和提供可预测的工程设计是必要的。通道的重新编程和再工程可用于传感应用、通道病的治疗、化学神经生物学以及为靶向离子通道提供新的先导化合物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验