Suppr超能文献

聚己内酯接枝微纤化纤维素的合成及其在新型生物纳米复合材料中的应用——接枝长度对力学性能的影响。

Synthesis of polycaprolactone-grafted microfibrillated cellulose for use in novel bionanocomposites--influence of the graft length on the mechanical properties.

机构信息

Royal Institute of Technology , Fibre and Polymer Technology, Teknikringen 56-58, SE-10044 Stockholm, Sweden.

出版信息

ACS Appl Mater Interfaces. 2011 May;3(5):1426-33. doi: 10.1021/am2001828. Epub 2011 May 4.

Abstract

In the present work, microfibrillated cellulose (MFC) made from bleached sulfite softwood dissolving pulp was utilized to reinforce a poly(ε-caprolactone) (PCL) biopolymer matrix. To improve the dispersibility of the hydrophilic MFC in the nonpolar matrix and the interfacial adhesion in the composite material, we covalently grafted the MFC with PCL via ring-opening polymerization (ROP) of ε-caprolactone (ε-CL). To be able to investigate the effect of the PCL graft length on the mechanical properties of the composite material, we performed ROP to different molecular weights of the grafts. Bionanocomposites containing 0, 3, and 10 wt % MFC were prepared via hot pressing using both unmodified and PCL grafted MFC (MFC-g-PCL) as reinforcement. PCL grafting resulted in improved dispersion of the MFC in a nonpolar solvent and in the PCL matrix. The mechanical testing of the biocomposites showed an improvement in the mechanical properties for the PCL grafted MFC in comparison to ungrafted MFC. It was also shown that there was an impact on the mechanical properties with respect to the PCL graft lengths, and the strongest biocomposites were obtained after reinforcement with MFC grafted with the longest PCL graft length.

摘要

在本工作中,利用源自漂白亚硫酸盐软木溶解浆的微原纤化纤维素(MFC)来增强聚(ε-己内酯)(PCL)生物聚合物基质。为了提高亲水性 MFC 在非极性基质中的分散性和复合材料中的界面粘附力,我们通过ε-己内酯(ε-CL)的开环聚合(ROP)将 MFC 与 PCL 共价接枝。为了能够研究接枝 PCL 的长度对复合材料力学性能的影响,我们对不同分子量的接枝物进行了 ROP。通过热压法制备了含有 0、3 和 10wt%MFC 的生物纳米复合材料,同时使用未改性和接枝 PCL 的 MFC(MFC-g-PCL)作为增强材料。PCL 接枝导致 MFC 在非极性溶剂和 PCL 基质中的分散性得到改善。对生物复合材料的力学测试表明,与未接枝的 MFC 相比,接枝 PCL 的 MFC 的力学性能得到了提高。还表明,接枝 PCL 的长度对机械性能有影响,并且在用最长接枝 PCL 的 MFC 增强后,获得了最强的生物复合材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验