Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
J Chromatogr B Analyt Technol Biomed Life Sci. 2011 May 1;879(15-16):1105-11. doi: 10.1016/j.jchromb.2011.03.027. Epub 2011 Mar 21.
Rotavirus VP6 self-assembles into high order macrostructures useful as novel scaffolds for the construction of multifunctional hybrid nanobiomaterials. This application requires large quantities of high quality pure material with strict structural consistency. Strategies for obtaining high quality recombinant VP6 and different characterization techniques are explored and compared in this work. VP6 was expressed in the insect cell-baculovirus system. VP6 assemblies were selectively purified utilizing an ion exchange and size exclusion (SE) chromatography. Purification steps were monitored and characterized by dynamic light scattering (DLS), ELISA, SDS-PAGE, HPLC and Western blot. DLS showed that the initial ultrafiltration step removed small particles, the intermediate anion exchange chromatographic step completely removed the baculovirus, whereas the final size exclusion chromatography permitted the selective recovery of correctly assembled VP6 nanotubes and discrimination of non-assembled VP6, as confirmed by transmission electron microscopy. VP6 assembled into tubular structures with diameter of 75 nm and several nanometers in length. The purification yield was 20% of multimeric assemblies with a purity >98%. The resulting material was suitable for the production of functionalized hybrid nanobiomaterials through in situ synthesis of metallic nanoparticles.
轮状病毒 VP6 能够自我组装成高阶大分子结构,可用作构建多功能杂化纳米生物材料的新型支架。这种应用需要大量高质量的纯材料,且具有严格的结构一致性。本工作探索并比较了获得高质量重组 VP6 的策略和不同的表征技术。VP6 在昆虫细胞-杆状病毒系统中表达。利用离子交换和尺寸排阻(SE)色谱法选择性地纯化 VP6 组装体。通过动态光散射(DLS)、ELISA、SDS-PAGE、HPLC 和 Western blot 监测和表征纯化步骤。DLS 表明,初始的超滤步骤去除了小颗粒,中间的阴离子交换色谱步骤完全去除了杆状病毒,而最后的尺寸排阻色谱允许选择性回收正确组装的 VP6 纳米管,并通过透射电子显微镜确认了未组装的 VP6 的区分。VP6 组装成直径为 75nm 且长度为数纳米的管状结构。多聚体组装体的纯化收率为 20%,纯度>98%。所得材料适用于通过原位合成金属纳米粒子生产功能化杂化纳米生物材料。