Suppr超能文献

杏(Prunus armeniaca)的雄蕊发育和冬季休眠。

Stamen development and winter dormancy in apricot (Prunus armeniaca).

机构信息

Unidad de Fruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Av. Montañana 930, 50059 Zaragoza, Spain.

出版信息

Ann Bot. 2011 Sep;108(4):617-25. doi: 10.1093/aob/mcr056. Epub 2011 Apr 7.

Abstract

BACKGROUND AND AIMS

In temperate woody perennials, flower bud development is halted during the winter, when the buds enter dormancy. This dormant period is a prerequisite for adequate flowering, is genetically regulated, and plays a clear role in possibly adapting species and cultivars to climatic areas. However, information on the biological events underpinning dormancy is lacking. Stamen development, with clear differentiated stages, appears as a good framework to put dormancy in a developmental context. Here, stamen developmental changes are characterized in apricot (Prunus armeniaca) and are related to dormancy.

METHODS

Stamen development was characterized cytochemically from the end of August to March, over 4 years. Developmental changes were related to dormancy, using the existing empirical information on chilling requirements.

KEY RESULTS

Stamen development continued during the autumn, and the flower buds entered dormancy with a fully developed sporogenous tissue. Although no anatomical changes were observed during dormancy, breaking of dormancy occurred following a clear sequence of events. Starch accumulated in particular places, pre-empting further development in those areas. Vascular bundles developed and pollen mother cells underwent meiosis followed by microspore development.

CONCLUSIONS

Dormancy appears to mark a boundary between the development of the sporogenous tissue and the occurrence of meiosis for further microspore development. Breaking of dormancy occurs following a clear sequence of events, providing a developmental context in which to study winter dormancy and to evaluate differences in chilling requirements among genotypes.

摘要

背景和目的

在温带木本多年生植物中,当芽进入休眠期时,花芽发育在冬季停止。这种休眠期是充分开花的前提,受遗传调控,并在可能使物种和品种适应气候区域方面发挥着明显的作用。然而,关于休眠背后的生物学事件的信息却很少。雄蕊的发育具有明显的分化阶段,是将休眠置于发育背景下的一个很好的框架。在这里,我们以杏(Prunus armeniaca)为例,研究了雄蕊的发育变化及其与休眠的关系。

方法

4 年来,我们在 8 月底至 3 月期间,采用细胞化学方法对雄蕊的发育进行了特征描述。根据对冷需求的现有经验信息,将发育变化与休眠联系起来。

主要结果

雄蕊发育在秋季继续进行,花芽进入休眠期时,具有完全发育的花粉母组织。尽管在休眠期间没有观察到解剖学上的变化,但休眠的打破遵循着一个明确的事件序列。淀粉特别在某些地方积累,预先阻止了这些区域的进一步发育。维管束发育,花粉母细胞经历减数分裂,随后是小孢子发育。

结论

休眠似乎标志着花粉母组织发育和减数分裂发生之间的界限,以进一步进行小孢子发育。休眠的打破遵循着一个明确的事件序列,为研究冬季休眠和评估不同基因型对冷需求的差异提供了一个发育背景。

相似文献

1
Stamen development and winter dormancy in apricot (Prunus armeniaca).
Ann Bot. 2011 Sep;108(4):617-25. doi: 10.1093/aob/mcr056. Epub 2011 Apr 7.
2
Anther and pollen development in sweet cherry (Prunus avium L.) in relation to winter dormancy.
Protoplasma. 2019 May;256(3):733-744. doi: 10.1007/s00709-018-01332-4. Epub 2018 Nov 30.
4
6
Male Meiosis as a Biomarker for Endo- to Ecodormancy Transition in Apricot.
Front Plant Sci. 2022 Apr 7;13:842333. doi: 10.3389/fpls.2022.842333. eCollection 2022.
8
Identification, Structural and Functional Characterization of Dormancy Regulator Genes in Apricot ( L.).
Front Plant Sci. 2019 Apr 5;10:402. doi: 10.3389/fpls.2019.00402. eCollection 2019.
9
Dormancy regulator Prunus mume DAM6 promotes ethylene-mediated leaf senescence and abscission.
Plant Mol Biol. 2024 Sep 16;114(5):99. doi: 10.1007/s11103-024-01497-y.
10
Dormancy release and flowering time in Ziziphus jujuba Mill., a "direct flowering" fruit tree, has a facultative requirement for chilling.
J Plant Physiol. 2016 Mar 15;192:118-27. doi: 10.1016/j.jplph.2016.02.002. Epub 2016 Feb 10.

引用本文的文献

1
Enzymatic Starch Quantification in Developing Flower Primordia of Sweet Cherry.
Bio Protoc. 2025 Apr 5;15(7):e5256. doi: 10.21769/BioProtoc.5256.
2
euAP2a, a key gene that regulates flowering time in peach () by modulating thermo-responsive transcription programming.
Hortic Res. 2024 Apr 8;11(5):uhae076. doi: 10.1093/hr/uhae076. eCollection 2024 May.
3
Perspectives on the adaptation of Japanese plum-type cultivars to reduced winter chilling in two regions of Spain.
Front Plant Sci. 2024 Apr 17;15:1343593. doi: 10.3389/fpls.2024.1343593. eCollection 2024.
5
Transcriptomic landscape of staminate catkins development during overwintering process in .
Front Plant Sci. 2024 Jan 8;14:1249122. doi: 10.3389/fpls.2023.1249122. eCollection 2023.
6
Chilling Requirements of Apricot ( L.) Cultivars Using Male Meiosis as a Dormancy Biomarker.
Plants (Basel). 2023 Aug 23;12(17):3025. doi: 10.3390/plants12173025.
7
Integration of genome and transcriptome reveal molecular regulation mechanism of early flowering trait in genus ( and ).
Front Plant Sci. 2022 Oct 6;13:1036221. doi: 10.3389/fpls.2022.1036221. eCollection 2022.
8
Identification of Key Genes Related to Dormancy Control in Species by Meta-Analysis of RNAseq Data.
Plants (Basel). 2022 Sep 21;11(19):2469. doi: 10.3390/plants11192469.
9
Integrated transcriptome and small RNA sequencing in revealing miRNA-mediated regulatory network of floral bud break in .
Front Plant Sci. 2022 Jul 22;13:931454. doi: 10.3389/fpls.2022.931454. eCollection 2022.
10
Evidence of chromatin and transcriptional dynamics for cold development in peach flower bud.
New Phytol. 2022 Nov;236(3):974-988. doi: 10.1111/nph.18393. Epub 2022 Aug 10.

本文引用的文献

1
Microscopic studies of cell divisions induced in alfalfa roots by Rhizobium meliloti.
Planta. 1987 Jul;171(3):289-301. doi: 10.1007/BF00398674.
2
Meiosis in flowering plants and other green organisms.
J Exp Bot. 2010 Jun;61(11):2863-75. doi: 10.1093/jxb/erq191.
3
Tapetal cell fate, lineage and proliferation in the Arabidopsis anther.
Development. 2010 Jul;137(14):2409-16. doi: 10.1242/dev.049320.
4
5
Cell-cell interactions during patterning of the Arabidopsis anther.
Biochem Soc Trans. 2010 Apr;38(2):571-6. doi: 10.1042/BST0380571.
6
H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis.
Cell. 2010 Jan 8;140(1):136-47. doi: 10.1016/j.cell.2009.11.006.
8
Bridging the generation gap: flowering plant gametophytes and animal germlines reveal unexpected similarities.
Biol Rev Camb Philos Soc. 2009 Nov;84(4):589-615. doi: 10.1111/j.1469-185X.2009.00088.x. Epub 2009 Sep 2.
9
Intra-annual cambial activity and carbon availability in stem of poplar.
Tree Physiol. 2009 Oct;29(10):1223-35. doi: 10.1093/treephys/tpp061. Epub 2009 Aug 20.
10
From Arabidopsis to rice: pathways in pollen development.
J Exp Bot. 2009;60(5):1479-92. doi: 10.1093/jxb/erp095. Epub 2009 Mar 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验