Suppr超能文献

基于核自优化 Fisher 判别分析的乳腺 X 线图像乳腺组织分类用于乳腺癌诊断。

Mammographic image based breast tissue classification with kernel self-optimized fisher discriminant for breast cancer diagnosis.

机构信息

Department of Automatic Test and Control, Harbin Institute of Technology, Harbin, China.

出版信息

J Med Syst. 2012 Aug;36(4):2235-44. doi: 10.1007/s10916-011-9691-4. Epub 2011 Apr 8.

Abstract

Breast tissue classification is an important and effective way for computer aided diagnosis of breast cancer with digital mammogram. Current methods endure two problems, firstly pectoral muscle influences the classification performance owing to its texture similar to parenchyma, and secondly classification algorithms fail to deal with the nonlinear problem from the digital mammogram. For these problems, we propose a novel framework of breast tissue classification based on kernel self-optimized discriminant analysis combined with the artifacts and pectoral muscle removal with multi-level segmentation based Connected Component Labeling analysis. Experiments on mini-MIAS database are implemented to testify and evaluate the performance of proposed algorithm.

摘要

乳腺组织分类是基于数字乳腺图像的计算机辅助乳腺癌诊断的一种重要且有效的方法。目前的方法存在两个问题,一是由于胸肌与实质组织的纹理相似,会影响分类性能;二是分类算法无法处理数字乳腺图像的非线性问题。针对这些问题,我们提出了一种新的基于核自优化判别分析的乳腺组织分类框架,并结合基于多级分割的连通分量标记分析的伪影和胸肌去除方法。在 mini-MIAS 数据库上进行实验,以验证和评估所提出算法的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验