Suppr超能文献

一种新型的乳腺组织密度分类方法。

A novel breast tissue density classification methodology.

作者信息

Oliver A, Freixenet J, Martí R, Pont J, Pérez E, Denton E R E, Zwiggelaar R

机构信息

Institute of Informatics and Applications, Unversity of Girona, 17071 Girona, Spain.

出版信息

IEEE Trans Inf Technol Biomed. 2008 Jan;12(1):55-65. doi: 10.1109/TITB.2007.903514.

Abstract

It has been shown that the accuracy of mammographic abnormality detection methods is strongly dependent on the breast tissue characteristics, where a dense breast drastically reduces detection sensitivity. In addition, breast tissue density is widely accepted to be an important risk indicator for the development of breast cancer. Here, we describe the development of an automatic breast tissue classification methodology, which can be summarized in a number of distinct steps: 1) the segmentation of the breast area into fatty versus dense mammographic tissue; 2) the extraction of morphological and texture features from the segmented breast areas; and 3) the use of a Bayesian combination of a number of classifiers. The evaluation, based on a large kappa = 0.81 and 0.67 for the two data sets) between automatic and expert-based Breast Imaging Reporting and Data System mammographic density assessment.

摘要

研究表明,乳腺钼靶异常检测方法的准确性在很大程度上取决于乳腺组织特征,致密型乳腺会显著降低检测灵敏度。此外,乳腺组织密度被广泛认为是乳腺癌发生的重要风险指标。在此,我们描述了一种自动乳腺组织分类方法的开发过程,该过程可概括为若干不同步骤:1)将乳腺区域分割为脂肪型与致密型乳腺钼靶组织;2)从分割后的乳腺区域中提取形态学和纹理特征;3)使用多个分类器的贝叶斯组合。基于两个数据集(自动评估与基于专家的乳腺影像报告和数据系统钼靶密度评估之间的kappa值分别为0.81和0.67)进行评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验