Suppr超能文献

颠倒的运动方式:悬挂四足动物肘部的生物力学专门化反映了倒置的重力约束。

Topsy-turvy locomotion: biomechanical specializations of the elbow in suspended quadrupeds reflect inverted gravitational constraints.

机构信息

The University Museum, The University of Tokyo, Tokyo, Japan.

出版信息

J Anat. 2011 Aug;219(2):176-91. doi: 10.1111/j.1469-7580.2011.01379.x. Epub 2011 Apr 8.

Abstract

Some tetrapods hang upside down from tree branches when moving horizontally. The ability to walk in quadrupedal suspension has been acquired independently in at least 14 mammalian lineages. During the stance (supportive) phase of quadrupedal suspension, the elbow joint flexor muscles (not the extensors as in upright vertebrates moving overground) are expected to contract to maintain the flexed limb posture. Therefore muscular control in inverted, suspended quadrupeds may require changes of muscle control, and even morphologies, to conditions opposite to those in upright animals. However, the relationships between musculoskeletal morphologies and elbow joint postures during the stance phase in suspended quadrupeds have not been investigated. Our analysis comparing postures and skeletal morphologies in Choloepus (Pilosa), Pteropus (Chiroptera), Nycticebus (Primates) and Cynocephalus (Dermoptera) revealed that the elbow joints of these animals were kept at flexed angles of 70-100 ° during the stance phase of quadrupedal suspension. At these joint angles the moment arms of the elbow joint flexors were roughly maximized, optimizing that component of antigravity support. Our additional measurements from various mammalian species show that suspended quadrupeds have relatively small extensor/flexor ratios in both muscle masses and maximum moment arms. Thus, in contrast to the pattern in normal terrestrial quadrupeds, suspended quadrupeds emphasize flexor over extensor muscles for body support. This condition has evolved independently multiple times, attendant with a loss or reduction of the ability to move in normal upright postures.

摘要

有些四足动物在水平移动时会倒吊在树枝上。至少在 14 个哺乳动物谱系中,四足悬停的行走能力是独立获得的。在四足悬停的支撑阶段,肘关节屈肌(与在地面上移动的直立脊椎动物的伸肌不同)预计会收缩以保持弯曲的肢体姿势。因此,倒置、悬挂的四足动物的肌肉控制可能需要改变肌肉控制,甚至形态,以适应与直立动物相反的条件。然而,悬挂四足动物在支撑阶段的骨骼形态和肘关节姿势之间的关系尚未得到研究。我们比较了 Choloepus(有袋目)、Pteropus(翼手目)、Nycticebus(灵长目)和 Cynocephalus(皮翼目)的姿势和骨骼形态的分析表明,这些动物的肘关节在四足悬停的支撑阶段保持在 70-100°的弯曲角度。在这些关节角度下,肘关节屈肌的力臂大致最大化,优化了对抗重力的支撑部分。我们从各种哺乳动物物种的额外测量结果表明,悬挂四足动物的肌肉质量和最大力矩臂的伸肌/屈肌比相对较小。因此,与正常陆地四足动物的模式相反,悬挂四足动物强调屈肌而不是伸肌来支撑身体。这种情况已经独立进化了多次,伴随着在正常直立姿势下移动的能力的丧失或减少。

相似文献

2
Elbow joint adductor moment arm as an indicator of forelimb posture in extinct quadrupedal tetrapods.
Proc Biol Sci. 2012 Jul 7;279(1738):2561-70. doi: 10.1098/rspb.2012.0190. Epub 2012 Feb 22.
9
Mechanical feasibility of immediate mobilization of the brachioradialis muscle after tendon transfer.
J Hand Surg Am. 2010 Sep;35(9):1473-8. doi: 10.1016/j.jhsa.2010.06.003. Epub 2010 Aug 14.

引用本文的文献

1
Three-Dimensional Limb Kinematics in Brown-Throated Three-Toed Sloths (Bradypus variegatus) During Suspensory Quadrupedal Locomotion.
J Exp Zool A Ecol Integr Physiol. 2025 Jun;343(5):564-577. doi: 10.1002/jez.2911. Epub 2025 Mar 3.
2
Gliding toward an understanding of the origin of flight in bats.
PeerJ. 2024 Jul 25;12:e17824. doi: 10.7717/peerj.17824. eCollection 2024.
4
Pump the brakes! The hindlimbs of three-toed sloths decelerate and support suspensory locomotion.
J Exp Biol. 2023 Apr 15;226(8). doi: 10.1242/jeb.245622. Epub 2023 Apr 19.
5
Myology of the pelvic limb of the brown-throated three-toed sloth (Bradypus variegatus).
J Anat. 2022 Jun;240(6):1048-1074. doi: 10.1111/joa.13626. Epub 2022 Jan 17.
9
Elbow joint adductor moment arm as an indicator of forelimb posture in extinct quadrupedal tetrapods.
Proc Biol Sci. 2012 Jul 7;279(1738):2561-70. doi: 10.1098/rspb.2012.0190. Epub 2012 Feb 22.

本文引用的文献

1
Positional behavior of female bornean orangutans (Pongo pygmaeus).
Am J Primatol. 1987;12(1):71-90. doi: 10.1002/ajp.1350120104.
2
The anatomy of the forelimb in the anteater (Tamandua) and its functional implications.
J Morphol. 1978 Sep;157(3):347-367. doi: 10.1002/jmor.1051570307.
3
Muscle moment arms and function of the siamang forelimb during brachiation.
J Anat. 2010 Nov;217(5):521-35. doi: 10.1111/j.1469-7580.2010.01272.x.
5
Muscle moment arms of the gibbon hind limb: implications for hylobatid locomotion.
J Anat. 2010 Apr;216(4):446-62. doi: 10.1111/j.1469-7580.2009.01209.x.
7
Evolutionary morphology of the Tenrecoidea (Mammalia) hindlimb skeleton.
J Morphol. 2009 Mar;270(3):367-87. doi: 10.1002/jmor.10697.
9
Mechanics of torque generation during quadrupedal arboreal locomotion.
J Biomech. 2008 Aug 7;41(11):2388-95. doi: 10.1016/j.jbiomech.2008.05.038. Epub 2008 Jul 10.
10
A three-dimensional model of the rat hindlimb: musculoskeletal geometry and muscle moment arms.
J Biomech. 2008;41(3):610-9. doi: 10.1016/j.jbiomech.2007.10.004. Epub 2007 Dec 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验