Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA.
Oecologia. 2011 Sep;167(1):199-207. doi: 10.1007/s00442-011-1979-z. Epub 2011 Apr 9.
Repeated, spatially explicit sampling is widely used to characterize the dynamics of sessile communities in both terrestrial and aquatic systems, yet our understanding of the consequences of errors made in such sampling is limited. In particular, when Markov transition probabilities are calculated by tracking individual points over time, misidentification of the same spatial locations will result in biased estimates of transition probabilities, successional rates, and community trajectories. Nonetheless, to date, all published studies that use such data have implicitly assumed that resampling occurs without error when making estimates of transition rates. Here, we develop and test a straightforward maximum likelihood approach, based on simple field estimates of resampling errors, to arrive at corrected estimates of transition rates between species in a rocky intertidal community. We compare community Markov models based on raw and corrected transition estimates using data from Endocladia muricata-dominated plots in a California intertidal assemblage, finding that uncorrected predictions of succession consistently overestimate recovery time. We tested the precision and accuracy of the approach using simulated datasets and found good performance of our estimation method over a range of realistic sample sizes and error rates.
重复的、空间明确的采样被广泛用于描述陆地和水生系统中固着群落的动态,但我们对这种采样中出现错误的后果的理解是有限的。特别是,当通过随时间跟踪个体点来计算马尔可夫转移概率时,同一空间位置的错误识别将导致转移概率、演替率和群落轨迹的有偏估计。尽管如此,迄今为止,所有使用此类数据的已发表研究都隐含地假设,在进行转移率估计时,重新采样不会出现错误。在这里,我们开发并测试了一种简单的最大似然方法,该方法基于对重新采样误差的简单现场估计,以得出岩石潮间带群落中物种之间转移率的校正估计值。我们使用加利福尼亚潮间带组合中以 Endocladia muricata 为主导的斑块的数据,比较了基于原始和校正转移估计的群落马尔可夫模型,发现未经校正的演替预测始终高估了恢复时间。我们使用模拟数据集测试了该方法的精度和准确性,发现我们的估计方法在一系列现实的样本大小和错误率下表现良好。