Suppr超能文献

有机质如何限制 Fe 纳米颗粒的性质、大小和生物还原可用性?

How does organic matter constrain the nature, size and availability of Fe nanoparticles for biological reduction?

机构信息

CNRS-UMR 6118, Géosciences Rennes, University of Rennes 1, Avenue du Général Leclerc, 35042 Rennes Cedex, France.

出版信息

J Colloid Interface Sci. 2011 Jul 1;359(1):75-85. doi: 10.1016/j.jcis.2011.03.067. Epub 2011 Mar 24.

Abstract

Few studies have so far examined the kinetics and extent of the formation of Fe-colloids in the presence of natural organic ligands. The present study used an experimental approach to investigate the rate and amount of colloidal Fe formed in presence of humic substances, by gradually oxidizing Fe(II) at pH 6.5 with or without humic substances (HS) (in this case, humic acid--HA and fulvic acid--FA). Without HS, micronic aggregates (0.1-1 μm diameter) of nano-lepidocrocite is obtained, whereas, in a humic-rich medium (HA and FA suspensions at 60 and 55 ppm of DOC respectively), nanometer-sized Fe particles are formed trapped in an organic matrix. A proportion of iron is not found to contribute to the formation of nanoparticles since iron is complexed to HS as Fe(II) or Fe(III). Humic substances tend to (i) decrease the Fe oxidation and hydrolysis, and (ii) promote nanometer-sized Fe oxide formation by both inhibiting the development of hydroxide nuclei and reducing the aggregation of Fe nanoparticles. Bioreduction experiments demonstrate that bacteria (Shewanella putrefaciens CIP 80.40 T) are able to use Fe nanoparticles associated with organic matter about eight times faster than in the case of nano-lepidocrocite. This increase in bioreduction rate appears to be related to the presence of humic acids that (i) indirectly control the size, shape and density of oxyhydroxides and (ii) directly enhance biological reduction of nanoparticles by electron shuttling and Fe complexation. These results suggest that, in wetlands but also elsewhere where mixed organic matter-Fe colloids occur, Fe nanoparticles closely associated with organic matter represent a bioavailable Fe source much more accessible for microfauna than do crystallized Fe oxyhydroxides.

摘要

目前的研究采用实验方法,通过在 pH 值为 6.5 时用或不用腐殖质(在此情况下为腐殖酸(HA)和富里酸(FA))逐渐氧化 Fe(II),来研究在腐殖质存在下形成胶体 Fe 的速率和数量。没有腐殖质,会得到直径为 0.1-1 微米的纳米针铁矿的微米级团聚体,而在富含腐殖质的介质(分别为 60 和 55 ppm DOC 的 HA 和 FA 悬浮液)中,会形成纳米级的铁颗粒,并被有机基质困住。一部分铁没有参与形成纳米颗粒,因为铁与腐殖质络合形成 Fe(II)或 Fe(III)。腐殖质往往会:(i)降低 Fe 的氧化和水解,(ii)通过抑制氢氧化物核的发展和减少 Fe 纳米颗粒的聚集,促进纳米级 Fe 氧化物的形成。生物还原实验表明,细菌(Shewanella putrefaciens CIP 80.40 T)能够比使用纳米针铁矿时快八倍的速度利用与有机物相关联的 Fe 纳米颗粒。这种生物还原速率的增加似乎与腐殖酸的存在有关,腐殖酸(i)间接控制了水合氧化物的大小、形状和密度,(ii)通过电子穿梭和 Fe 络合直接增强了纳米颗粒的生物还原。这些结果表明,在湿地以及其他存在混合有机物质-Fe 胶体的地方,与有机物密切相关的 Fe 纳米颗粒代表了一种对微小动物更易获得的生物可利用的 Fe 源,比结晶态的 Fe 水合氧化物更易获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验