Institute of Applied Radiation Chemistry, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland.
Phys Chem Chem Phys. 2011 May 28;13(20):9458-68. doi: 10.1039/c0cp02735a. Epub 2011 Apr 11.
Classical molecular dynamics (MD) simulation of ˙OH in liquid water at 37 °C has been performed using flexible models of the solute and solvent molecules. We derived the Morse function describing the bond stretching of the radical and the potential for ˙OH-H(2)O interactions, including short-range interactions of hydrogen atoms. Scans of the potential energy surface of the ˙OH-H(2)O complex have been performed using the DFT method with the B3LYP functional and the 6-311G(d,p) basis set. The DFT-derived partial charges, ±0.375e, and the equilibrium bond-length, 0.975 Å, of ˙OH resulted in the dipole moment of 1.76 D. The radical-water radial distribution functions revealed that ˙OH is not built into the solvent structure but it rather occupies distortions or cavities in the hydrogen-bonded network. The solvent structure at 37 °C has been found to be the same as that of pure water. The hydration cage of the radical comprises 13-14 water molecules. The estimated hydration enthalpy -42 ± 5 kJ mol(-1) is comparable with the experimental value -39 ± 6 kJ mol(-1) for 25 °C. Inspection of hydrogen bonds showed the importance of short-range interaction of hydrogen atoms and indicated that neglect of the angular condition greatly overestimates the number of the H-acceptor radical-water bonds. The mean number ̅n = 0.85 of radical-water H-bonds has been calculated using geometric definition of H-bond and ̅n = 0.62 has been obtained when the energetic condition, E(da)≤-8 kJ mol(-1), was additionally considered. The continuous lifetimes of 0.033 ps and 0.024 ps have been estimated for the radical H-donor and the H-acceptor bonds, respectively. Within statistical uncertainty the radical self-diffusion coefficient, (2.9 ± 0.6) × 10(-9) m(2) s(-1), is the same as (3.1 ± 0.5) × 10(-9) m(2) s(-1) calculated for water in solution and in pure solvent. To the best of our knowledge, this is the first study of the ˙OH(aq) properties at a biologically relevant body temperature.
采用柔性溶质和溶剂分子模型,对 37°C 下液体水中的˙OH 进行了经典分子动力学(MD)模拟。我们推导出了描述自由基键拉伸的 Morse 函数和˙OH-H(2)O 相互作用的势能,包括氢原子的短程相互作用。使用 DFT 方法(B3LYP 泛函和 6-311G(d,p)基组)对˙OH-H(2)O 复合物的势能表面进行了扫描。DFT 衍生的部分电荷为±0.375e,˙OH 的平衡键长为 0.975Å,导致偶极矩为 1.76 D。自由基-水的径向分布函数表明,˙OH 并未融入溶剂结构,而是占据了氢键网络中的扭曲或空腔。在 37°C 下,溶剂结构与纯水相同。自由基的水合笼由 13-14 个水分子组成。估计的水合焓为-42±5kJ mol(-1),与 25°C 下的实验值-39±6kJ mol(-1)相当。氢键的检查表明了氢原子短程相互作用的重要性,并表明忽略角度条件会极大地高估 H-接受体自由基-水键的数量。使用氢键的几何定义计算得到平均˙n = 0.85 个自由基-水氢键,当额外考虑能量条件 E(da)≤-8kJ mol(-1)时,得到˙n = 0.62。自由基供体和 H-接受体键的连续寿命分别估计为 0.033ps 和 0.024ps。在统计不确定性范围内,自由基自扩散系数为(2.9±0.6)×10(-9)m(2)s(-1),与溶液中和纯溶剂中计算得到的水的(3.1±0.5)×10(-9)m(2)s(-1)相同。据我们所知,这是首次在与生物相关的体温下研究˙OH(aq)的性质。