Electrical Neuroimaging Group, Department of Clinical Neuroscience, University Hospital, Geneva, Switzerland.
Med Biol Eng Comput. 2011 May;49(5):511-20. doi: 10.1007/s11517-011-0769-4. Epub 2011 Apr 12.
Recordings of brain electrophysiological activity provide the most direct reflect of neural function. Information contained in these signals varies as a function of the spatial scale at which recordings are done: from single cell recording to large scale macroscopic fields, e.g., scalp EEG. Microscopic and macroscopic measurements and models in Neuroscience are often in conflict. Solving this conflict might require the developments of a sort of bio-statistical physics, a framework for relating the microscopic properties of individual cells to the macroscopic or bulk properties of neural circuits. Such a framework can only emerge in Neuroscience from the systematic analysis and modeling of the diverse recording scales from simultaneous measurements. In this article we briefly review the different measurement scales and models in modern neuroscience to try to identify the sources of conflict that might ultimately help to create a unified theory of brain electromagnetic fields. We argue that seen the different recording scales, from the single cell to the large scale fields measured by the scalp electroencephalogram, as derived from a unique physical magnitude--the electric potential that is measured in all cases--might help to conciliate microscopic and macroscopic models of neural function as well as the animal and human neuroscience literature.
脑电生理活动记录提供了对神经功能最直接的反映。这些信号中包含的信息随记录的空间尺度而变化:从单细胞记录到大规模宏观场,例如头皮 EEG。神经科学中的微观和宏观测量和模型经常存在冲突。解决这种冲突可能需要发展一种生物统计物理学,为将单个细胞的微观特性与神经回路的宏观或整体特性联系起来建立一个框架。这种框架只能从对不同记录尺度的系统分析和建模中从同步测量中出现在神经科学中。在本文中,我们简要回顾了现代神经科学中的不同测量尺度和模型,试图确定可能最终有助于创建脑电磁场统一理论的冲突源。我们认为,从单细胞到头皮脑电图测量的大规模场的不同记录尺度,可以从唯一的物理量——在所有情况下都测量的电势——中推导出来,这可能有助于调和神经功能的微观和宏观模型以及动物和人类神经科学文献。
Med Biol Eng Comput. 2011-4-12
Curr Opin Neurobiol. 2015-6
Neuroimage. 2015-1-13
Philos Trans R Soc Lond B Biol Sci. 1999-7-29
IEEE Trans Med Imaging. 2002-5
Neuroimage. 2009-2-15
PLoS Comput Biol. 2008-8-29
Med Biol Eng Comput. 2015-9
Med Biol Eng Comput. 2011-5
Neuron. 2010-7-15
Neuron. 2010-7-15
Front Neural Circuits. 2010-5-18
Behav Brain Funct. 2010-4-23
Ann N Y Acad Sci. 2010-3
J Neurosci. 2010-2-3
Nat Rev Neurosci. 2010-2