Suppr超能文献

从单病种调查中模拟合并感染风险的地理分布。

Modelling the geographical distribution of co-infection risk from single-disease surveys.

机构信息

Swiss Tropical and Public Health Institute, Basel, Switzerland.

出版信息

Stat Med. 2011 Jun 30;30(14):1761-76. doi: 10.1002/sim.4243. Epub 2011 Apr 11.

Abstract

BACKGROUND

The need to deliver interventions targeting multiple diseases in a cost-effective manner calls for integrated disease control efforts. Consequently, maps are required that show where the risk of co-infection is particularly high. Co-infection risk is preferably estimated via Bayesian geostatistical multinomial modelling, using data from surveys screening for multiple infections simultaneously. However, only few surveys have collected this type of data.

METHODS

Bayesian geostatistical shared component models (allowing for covariates, disease-specific and shared spatial and non-spatial random effects) are proposed to model the geographical distribution and burden of co-infection risk from single-disease surveys. The ability of the models to capture co-infection risk is assessed on simulated data sets based on multinomial distributions assuming light- and heavy-dependent diseases, and a real data set of Schistosoma mansoni-hookworm co-infection in the region of Man, Côte d'Ivoire. The data were restructured as if obtained from single-disease surveys. The estimated results of co-infection risk, together with independent and multinomial model results, were compared via different validation techniques.

RESULTS

The results showed that shared component models result in more accurate estimates of co-infection risk than models assuming independence in settings of heavy-dependent diseases. The shared spatial random effects are similar to the spatial co-infection random effects of the multinomial model for heavy-dependent data.

CONCLUSIONS

In the absence of true co-infection data geostatistical shared component models are able to estimate the spatial patterns and burden of co-infection risk from single-disease survey data, especially in settings of heavy-dependent diseases.

摘要

背景

以具有成本效益的方式提供针对多种疾病的干预措施的需求,需要综合疾病控制工作。因此,需要绘制显示合并感染风险特别高的地图。合并感染风险最好通过贝叶斯地质统计学多项式模型进行估计,该模型使用同时筛查多种感染的调查数据。然而,只有少数调查收集了这种类型的数据。

方法

提出了贝叶斯地质统计学共享分量模型(允许协变量、特定疾病和共享空间和非空间随机效应),用于对单病调查的合并感染风险的地理分布和负担进行建模。该模型捕捉合并感染风险的能力在基于多项分布的模拟数据集上进行评估,假设轻依赖疾病和重依赖疾病,并在科特迪瓦马恩地区的曼氏血吸虫-钩虫合并感染的真实数据集上进行评估。数据被重组为好像是从单病调查中获得的。合并感染风险的估计结果与独立和多项模型结果一起,通过不同的验证技术进行比较。

结果

结果表明,在重依赖疾病的情况下,共享分量模型比假设独立的模型更能准确估计合并感染风险。共享空间随机效应与重依赖数据的多项模型的空间合并感染随机效应相似。

结论

在缺乏真实合并感染数据的情况下,地质统计学共享分量模型能够从单病调查数据中估计合并感染风险的空间模式和负担,尤其是在重依赖疾病的情况下。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验