Suppr超能文献

基于异质数据源的基因组规模识别复杂表型风险基因的荟萃分析。

Meta-analysis of heterogeneous data sources for genome-scale identification of risk genes in complex phenotypes.

机构信息

Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark.

出版信息

Genet Epidemiol. 2011 Jul;35(5):318-32. doi: 10.1002/gepi.20580. Epub 2011 Apr 11.

Abstract

Meta-analyses of large-scale association studies typically proceed solely within one data type and do not exploit the potential complementarities in other sources of molecular evidence. Here, we present an approach to combine heterogeneous data from genome-wide association (GWA) studies, protein-protein interaction screens, disease similarity, linkage studies, and gene expression experiments into a multi-layered evidence network which is used to prioritize the entire protein-coding part of the genome identifying a shortlist of candidate genes. We report specifically results on bipolar disorder, a genetically complex disease where GWA studies have only been moderately successful. We validate one such candidate experimentally, YWHAH, by genotyping five variations in 640 patients and 1,377 controls. We found a significant allelic association for the rs1049583 polymorphism in YWHAH (adjusted P = 5.6e-3) with an odds ratio of 1.28 [1.12-1.48], which replicates a previous case-control study. In addition, we demonstrate our approach's general applicability by use of type 2 diabetes data sets. The method presented augments moderately powered GWA data, and represents a validated, flexible, and publicly available framework for identifying risk genes in highly polygenic diseases. The method is made available as a web service at www.cbs.dtu.dk/services/metaranker.

摘要

大规模关联研究的荟萃分析通常仅在一种数据类型中进行,而没有利用其他分子证据来源的潜在互补性。在这里,我们提出了一种方法,可以将来自全基因组关联(GWA)研究、蛋白质-蛋白质相互作用筛选、疾病相似性、连锁研究和基因表达实验的异构数据组合到一个多层次的证据网络中,该网络用于优先考虑整个基因组的蛋白编码部分,确定候选基因的候选名单。我们特别报告了双相情感障碍的结果,这是一种遗传复杂的疾病,GWAS 研究仅取得了中等成功。我们通过对 640 名患者和 1377 名对照进行五个变体的基因分型,实验验证了一个这样的候选基因 YWHAH。我们发现 YWHAH 中的 rs1049583 多态性存在显著的等位基因关联(调整后的 P = 5.6e-3),优势比为 1.28 [1.12-1.48],这与之前的病例对照研究结果一致。此外,我们还通过使用 2 型糖尿病数据集证明了我们方法的通用性。所提出的方法增强了中等功率的 GWAS 数据,并且代表了一种经过验证的、灵活的、公开可用的框架,用于识别高度多基因疾病中的风险基因。该方法作为一个网络服务在 www.cbs.dtu.dk/services/metaranker 上提供。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验