Suppr超能文献

一种用于行人分类的多层次专家混合框架。

A multilevel Mixture-of-Experts framework for pedestrian classification.

机构信息

Environment Perception Department, Daimler AG Group Research & MCG Development, 89081 Ulm, Germany.

出版信息

IEEE Trans Image Process. 2011 Oct;20(10):2967-79. doi: 10.1109/TIP.2011.2142006. Epub 2011 Apr 11.

Abstract

Notwithstanding many years of progress, pedestrian recognition is still a difficult but important problem. We present a novel multilevel Mixture-of-Experts approach to combine information from multiple features and cues with the objective of improved pedestrian classification. On pose-level, shape cues based on Chamfer shape matching provide sample-dependent priors for a certain pedestrian view. On modality-level, we represent each data sample in terms of image intensity, (dense) depth, and (dense) flow. On feature-level, we consider histograms of oriented gradients (HOG) and local binary patterns (LBP). Multilayer perceptrons (MLP) and linear support vector machines (linSVM) are used as expert classifiers.

摘要

尽管已经取得了多年的进展,但行人识别仍然是一个困难但重要的问题。我们提出了一种新颖的多层次混合专家方法,将来自多个特征和线索的信息结合起来,以提高行人分类的准确性。在姿态级别上,基于 Chamfer 形状匹配的形状线索为特定行人视角提供了样本相关的先验知识。在模态级别上,我们用图像强度、(密集)深度和(密集)流来表示每个数据样本。在特征级别上,我们考虑方向梯度直方图(HOG)和局部二值模式(LBP)。多层感知机(MLP)和线性支持向量机(linSVM)被用作专家分类器。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验