Environment Perception Department, Daimler AG Group Research & MCG Development, 89081 Ulm, Germany.
IEEE Trans Image Process. 2011 Oct;20(10):2967-79. doi: 10.1109/TIP.2011.2142006. Epub 2011 Apr 11.
Notwithstanding many years of progress, pedestrian recognition is still a difficult but important problem. We present a novel multilevel Mixture-of-Experts approach to combine information from multiple features and cues with the objective of improved pedestrian classification. On pose-level, shape cues based on Chamfer shape matching provide sample-dependent priors for a certain pedestrian view. On modality-level, we represent each data sample in terms of image intensity, (dense) depth, and (dense) flow. On feature-level, we consider histograms of oriented gradients (HOG) and local binary patterns (LBP). Multilayer perceptrons (MLP) and linear support vector machines (linSVM) are used as expert classifiers.
尽管已经取得了多年的进展,但行人识别仍然是一个困难但重要的问题。我们提出了一种新颖的多层次混合专家方法,将来自多个特征和线索的信息结合起来,以提高行人分类的准确性。在姿态级别上,基于 Chamfer 形状匹配的形状线索为特定行人视角提供了样本相关的先验知识。在模态级别上,我们用图像强度、(密集)深度和(密集)流来表示每个数据样本。在特征级别上,我们考虑方向梯度直方图(HOG)和局部二值模式(LBP)。多层感知机(MLP)和线性支持向量机(linSVM)被用作专家分类器。