Suppr超能文献

用于神经形态视觉传感器行人检测的多线索事件信息融合

Multi-Cue Event Information Fusion for Pedestrian Detection With Neuromorphic Vision Sensors.

作者信息

Chen Guang, Cao Hu, Ye Canbo, Zhang Zhenyan, Liu Xingbo, Mo Xuhui, Qu Zhongnan, Conradt Jörg, Röhrbein Florian, Knoll Alois

机构信息

College of Automotive Engineering, Tongji University, Shanghai, China.

Robotics, Artificial Intelligence and Real-time Systems, Technische Universität München, München, Germany.

出版信息

Front Neurorobot. 2019 Apr 2;13:10. doi: 10.3389/fnbot.2019.00010. eCollection 2019.

Abstract

Neuromorphic vision sensors are bio-inspired cameras that naturally capture the dynamics of a scene with ultra-low latency, filtering out redundant information with low power consumption. Few works are addressing the object detection with this sensor. In this work, we propose to develop pedestrian detectors that unlock the potential of the event data by leveraging multi-cue information and different fusion strategies. To make the best out of the event data, we introduce three different event-stream encoding methods based on Frequency, Surface of Active Event (SAE) and Leaky Integrate-and-Fire (LIF). We further integrate them into the state-of-the-art neural network architectures with two fusion approaches: the channel-level fusion of the raw feature space and decision-level fusion with the probability assignments. We present a qualitative and quantitative explanation why different encoding methods are chosen to evaluate the pedestrian detection and which method performs the best. We demonstrate the advantages of the decision-level fusion via leveraging multi-cue event information and show that our approach performs well on a self-annotated event-based pedestrian dataset with 8,736 event frames. This work paves the way of more fascinating perception applications with neuromorphic vision sensors.

摘要

神经形态视觉传感器是受生物启发的相机,能够以超低延迟自然地捕捉场景动态,以低功耗过滤掉冗余信息。很少有研究致力于使用这种传感器进行目标检测。在这项工作中,我们提议开发行人检测器,通过利用多线索信息和不同的融合策略来释放事件数据的潜力。为了充分利用事件数据,我们引入了三种基于频率、有源事件表面(SAE)和泄漏积分发放(LIF)的不同事件流编码方法。我们进一步将它们与两种融合方法集成到最先进的神经网络架构中:原始特征空间的通道级融合和概率分配的决策级融合。我们对选择不同编码方法来评估行人检测的原因以及哪种方法表现最佳进行了定性和定量的解释。我们通过利用多线索事件信息展示了决策级融合的优势,并表明我们的方法在一个包含8736个事件帧的自标注基于事件的行人数据集上表现良好。这项工作为使用神经形态视觉传感器进行更引人入胜的感知应用铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3f0/6454154/53b782931133/fnbot-13-00010-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验