Suppr超能文献

利用遥感方法评估美国佛罗里达州圣约瑟夫湾和清水港的海草资源。

Seagrass resource assessment using remote sensing methods in St. Joseph Sound and Clearwater Harbor, Florida, USA.

机构信息

Department of Geography and Environmental Science & Policy, University of South Florida, Tampa, FL, USA.

出版信息

Environ Monit Assess. 2012 Jan;184(2):1131-43. doi: 10.1007/s10661-011-2028-4. Epub 2011 Apr 13.

Abstract

In the event of a natural or anthropogenic disturbance, environmental resource managers require a reliable tool to quickly assess the spatial extent of potential damage to the seagrass resource. The temporal availability of the Landsat 5 Thematic Mapper (TM) imagery provided a suitable option to detect and assess damage of the submerged aquatic vegetation (SAV). This study examined Landsat TM imagery classification techniques to create two-class (SAV presence/absence) and three-class (SAV estimated coverage) SAV maps of the seagrass resource. The Mahalanobis Distance method achieved the highest overall accuracy (86%) and validation accuracy (68%) for delineating the seagrass resource (two-class SAV map). The Maximum Likelihood method achieved the highest overall accuracy (74%) and validation accuracy (70%) for delineating the seagrass resource three-class SAV map. The Landsat 5 TM imagery classification provided a seagrass resource map product with similar accuracy to the aerial photointerpretation maps (validation accuracy 71%). The results support the application of remote sensing methods to analyze the spatial extent of the seagrass resource.

摘要

在自然或人为干扰的情况下,环境资源管理者需要一种可靠的工具来快速评估潜在的海草资源破坏的空间范围。陆地卫星 5 专题制图仪 (TM) 图像的时间可用性为检测和评估淹没水生植被 (SAV) 的损害提供了一个合适的选择。本研究探讨了陆地卫星 TM 图像分类技术,以创建海草资源的两类 (SAV 存在/不存在) 和三类 (SAV 估计覆盖) SAV 地图。马氏距离法在划定海草资源 (两类 SAV 地图) 方面实现了最高的总体精度 (86%) 和验证精度 (68%)。最大似然法在划定海草资源三类 SAV 地图方面实现了最高的总体精度 (74%) 和验证精度 (70%)。陆地卫星 5 TM 图像分类提供了与航空照片解译地图具有相似精度的海草资源地图产品 (验证精度 71%)。结果支持应用遥感方法来分析海草资源的空间范围。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验