School of Geosciences, Faculty of Science, University of Sydney, Sydney, NSW, 2006, Australia.
Centre for CubeSats, UAVs and Their Applications (CUAVA), University of Sydney, Sydney, NSW, 2006, Australia.
Sci Rep. 2024 Aug 17;14(1):19083. doi: 10.1038/s41598-024-69695-8.
Seagrasses provide critical ecosystem services but cumulative human pressure on coastal environments has seen a global decline in their health and extent. Key processes of anthropogenic disturbance can operate at local spatio-temporal scales that are not captured by conventional satellite imaging. Seagrass management strategies to prevent longer-term loss and ensure successful restoration require effective methods for monitoring these fine-scale changes. Current seagrass monitoring methods involve resource-intensive fieldwork or recurrent image classification. This study presents an alternative method using iteratively reweighted multivariate alteration detection (IR-MAD), an unsupervised change detection technique originally developed for satellite images. We investigate the application of IR-MAD to image data acquired using an unoccupied aerial vehicle (UAV). UAV images were captured at a 14-week interval over two seagrass beds in Brisbane Water, NSW, Australia using a 10-band Micasense RedEdge-MX Dual camera system. To guide sensor selection, a further three band subsets representing simpler sensor configurations (6, 5 and 3 bands) were also analysed using eight categories of seagrass change. The ability of the IR-MAD method, and for the four different sensor configurations, to distinguish the categories of change were compared using the Jeffreys-Matusita (JM) distance measure of spectral separability. IR-MAD based on the full 10-band sensor images produced the highest separability values indicating that human disturbances (propeller scars and other seagrass damage) were distinguishable from all other change categories. IR-MAD results for the 6-band and 5-band sensors also distinguished key seagrass change features. The IR-MAD results for the simplest 3-band sensor (an RGB camera) detected change features, but change categories were not strongly separable from each other. Analysis of IR-MAD weights indicated that additional visible bands, including a coastal blue band and a second red band, improve change detection. IR-MAD is an effective method for seagrass monitoring, and this study demonstrates the potential for multispectral sensors with additional visible bands to improve seagrass change detection.
海草为生态系统提供了关键服务,但由于人类对沿海环境的累积压力,其健康状况和分布范围在全球范围内都有所下降。人为干扰的关键过程可以在局部时空尺度上发生,而常规卫星成像无法捕捉到这些尺度。为了防止长期损失并确保成功恢复,海草管理策略需要有效的方法来监测这些细尺度变化。当前的海草监测方法涉及资源密集型的实地工作或反复的图像分类。本研究提出了一种替代方法,使用迭代重新加权多变量变化检测(IR-MAD),这是一种最初为卫星图像开发的无监督变化检测技术。我们调查了在澳大利亚新南威尔士州布里斯班沃特的两个海草床中使用无人驾驶飞行器(UAV)获取的图像数据中应用 IR-MAD 的情况。使用 Micasense RedEdge-MX 双相机系统的 10 波段多光谱传感器,以 14 周的间隔拍摄了 UAV 图像。为了指导传感器选择,还使用了另外三个波段子集(6、5 和 3 波段)分析了代表更简单传感器配置的八个海草变化类别。使用光谱可分离性的杰弗里斯-马图西塔(JM)距离度量来比较 IR-MAD 方法和四种不同传感器配置区分变化类别的能力。基于全 10 波段传感器图像的 IR-MAD 产生了最高的可分离性值,表明人为干扰(螺旋桨疤痕和其他海草损伤)与所有其他变化类别均可区分。6 波段和 5 波段传感器的 IR-MAD 结果也区分了关键的海草变化特征。最简单的 3 波段传感器(RGB 相机)的 IR-MAD 结果检测到了变化特征,但变化类别彼此之间没有很强的可分离性。IR-MAD 权重分析表明,增加可见波段,包括沿海蓝色波段和第二个红色波段,可以改善变化检测。IR-MAD 是一种有效的海草监测方法,本研究表明具有附加可见波段的多光谱传感器有潜力改善海草变化检测。