Suppr超能文献

利用高空间分辨率卫星图像为美国沿海生态系统中的海草制图提供框架。

Providing a framework for seagrass mapping in United States coastal ecosystems using high spatial resolution satellite imagery.

机构信息

Oak Ridge Institute for Science and Education, U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, USA; Global Science & Technology, Inc., Greenbelt, MD, USA.

Oak Ridge Institute for Science and Education, U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, USA.

出版信息

J Environ Manage. 2023 Jul 1;337:117669. doi: 10.1016/j.jenvman.2023.117669. Epub 2023 Mar 24.

Abstract

Seagrasses have been widely recognized for their ecosystem services, but traditional seagrass monitoring approaches emphasizing ground and aerial observations are costly, time-consuming, and lack standardization across datasets. This study leveraged satellite imagery from Maxar's WorldView-2 and WorldView-3 high spatial resolution, commercial satellite platforms to provide a consistent classification approach for monitoring seagrass at eleven study areas across the continental United States, representing geographically, ecologically, and climatically diverse regions. A single satellite image was selected at each of the eleven study areas to correspond temporally to reference data representing seagrass coverage and was classified into four general classes: land, seagrass, no seagrass, and no data. Satellite-derived seagrass coverage was then compared to reference data using either balanced agreement, the Mann-Whitney U test, or the Kruskal-Wallis test, depending on the format of the reference data used for comparison. Balanced agreement ranged from 58% to 86%, with better agreement between reference- and satellite-indicated seagrass absence (specificity ranged from 88% to 100%) than between reference- and satellite-indicated seagrass presence (sensitivity ranged from 17% to 73%). Results of the Mann-Whitney U and Kruskal-Wallis tests demonstrated that satellite-indicated seagrass percentage cover had moderate to large correlations with reference-indicated seagrass percentage cover, indicative of moderate to strong agreement between datasets. Satellite classification performed best in areas of dense, continuous seagrass compared to areas of sparse, discontinuous seagrass and provided a suitable spatial representation of seagrass distribution within each study area. This study demonstrates that the same methods can be applied across scenes spanning varying seagrass bioregions, atmospheric conditions, and optical water types, which is a significant step toward developing a consistent, operational approach for mapping seagrass coverage at the national and global scales. Accompanying this manuscript are instructional videos describing the processing workflow, including data acquisition, data processing, and satellite image classification. These instructional videos may serve as a management tool to complement field- and aerial-based mapping efforts for monitoring seagrass ecosystems.

摘要

海草已被广泛认为具有生态系统服务功能,但传统的强调地面和空中观测的海草监测方法成本高、耗时且缺乏数据集之间的标准化。本研究利用 Maxar 的 WorldView-2 和 WorldView-3 高空间分辨率商业卫星平台的卫星图像,为监测美国大陆的十一个研究区域的海草提供了一种一致的分类方法,这些研究区域在地理位置、生态和气候上具有多样性。在十一个研究区域中的每一个区域都选择了一张卫星图像,这些图像在时间上与代表海草覆盖范围的参考数据相对应,并将其分为四类:陆地、海草、无海草和无数据。然后,使用平衡一致性、曼-惠特尼 U 检验或克鲁斯卡尔-沃利斯检验,根据用于比较的参考数据的格式,将卫星衍生的海草覆盖率与参考数据进行比较。平衡一致性范围从 58%到 86%,参考数据和卫星指示的海草不存在(特异性范围从 88%到 100%)之间的一致性优于参考数据和卫星指示的海草存在(敏感性范围从 17%到 73%)之间的一致性。曼-惠特尼 U 检验和克鲁斯卡尔-沃利斯检验的结果表明,卫星指示的海草百分比覆盖与参考指示的海草百分比覆盖之间具有中等至大的相关性,表明数据集之间具有中等至强的一致性。与稀疏、不连续的海草相比,卫星分类在密集、连续的海草区域表现最佳,并为每个研究区域内的海草分布提供了合适的空间表示。本研究表明,相同的方法可以应用于跨越不同海草生物区、大气条件和光学水类型的场景,这是朝着在国家和全球范围内开发一致的、可操作的海草覆盖图绘制方法迈出的重要一步。本手稿附有说明处理工作流程的教学视频,包括数据获取、数据处理和卫星图像分类。这些教学视频可以作为一种管理工具,补充基于现场和空中的海草生态系统监测工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/173f/10622156/bff6c55bf21d/nihms-1888128-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验