Suppr超能文献

连接蛋白质和 mRNA 爆发分布的基因表达随机模型。

Connecting protein and mRNA burst distributions for stochastic models of gene expression.

机构信息

Department of Physics, Virginia Tech, Blacksburg, VA 24061, USA.

出版信息

Phys Biol. 2011 Aug;8(4):046001. doi: 10.1088/1478-3975/8/4/046001. Epub 2011 Apr 13.

Abstract

The intrinsic stochasticity of gene expression can lead to large variability in protein levels for genetically identical cells. Such variability in protein levels can arise from infrequent synthesis of mRNAs which in turn give rise to bursts of protein expression. Protein expression occurring in bursts has indeed been observed experimentally and recent studies have also found evidence for transcriptional bursting, i.e. production of mRNAs in bursts. Given that there are distinct experimental techniques for quantifying the noise at different stages of gene expression, it is of interest to derive analytical results connecting experimental observations at different levels. In this work, we consider stochastic models of gene expression for which mRNA and protein production occurs in independent bursts. For such models, we derive analytical expressions connecting protein and mRNA burst distributions which show how the functional form of the mRNA burst distribution can be inferred from the protein burst distribution. Additionally, if gene expression is repressed such that observed protein bursts arise only from single mRNAs, we show how observations of protein burst distributions (repressed and unrepressed) can be used to completely determine the mRNA burst distribution. Assuming independent contributions from individual bursts, we derive analytical expressions connecting means and variances for burst and steady-state protein distributions. Finally, we validate our general analytical results by considering a specific reaction scheme involving regulation of protein bursts by small RNAs. For a range of parameters, we derive analytical expressions for regulated protein distributions that are validated using stochastic simulations. The analytical results obtained in this work can thus serve as useful inputs for a broad range of studies focusing on stochasticity in gene expression.

摘要

基因表达的固有随机性会导致遗传上相同的细胞中蛋白质水平的巨大变化。蛋白质水平的这种可变性可能来自于 mRNA 的低频合成,而 mRNA 的合成又会导致蛋白质表达的爆发。蛋白质表达的爆发确实在实验中得到了观察,最近的研究也发现了转录爆发的证据,即 mRNA 的爆发产生。鉴于有不同的实验技术可以定量测量基因表达不同阶段的噪声,因此,从不同水平的实验观察中得出分析结果是很有趣的。在这项工作中,我们考虑了 mRNA 和蛋白质产生独立爆发的基因表达随机模型。对于这种模型,我们推导出了连接蛋白质和 mRNA 爆发分布的分析表达式,这些表达式表明如何从蛋白质爆发分布中推断出 mRNA 爆发分布的函数形式。此外,如果基因表达受到抑制,以至于观察到的蛋白质爆发只来自单个 mRNA,我们展示了如何使用蛋白质爆发分布的观察结果(受抑制和不受抑制)来完全确定 mRNA 爆发分布。假设来自单个爆发的独立贡献,我们推导出了连接爆发和稳态蛋白质分布的均值和方差的分析表达式。最后,我们通过考虑一个涉及小 RNA 调节蛋白质爆发的具体反应方案来验证我们的一般分析结果。对于一系列参数,我们推导出了受调控的蛋白质分布的解析表达式,并用随机模拟进行了验证。因此,这项工作中获得的分析结果可以作为广泛关注基因表达随机性的研究的有用输入。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验