Suppr超能文献

平面闪烁图与CT断层图的混合模态融合用于乳腺淋巴闪烁显像中前哨淋巴结的定位:技术描述与体模研究

Hybrid Modality Fusion of Planar Scintigrams and CT Topograms to Localize Sentinel Lymph Nodes in Breast Lymphoscintigraphy: Technical Description and Phantom Studies.

作者信息

Dickinson Renée L, Erwin William D, Stevens Donna M, Bidaut Luc M, Mar Martha V, Macapinlac Homer A, Wendt Richard E

机构信息

Graduate School of Biomedical Sciences, The University of Texas Health Sciences Center at Houston, Houston, TX 77030, USA.

出版信息

Int J Mol Imaging. 2011;2011:298102. doi: 10.1155/2011/298102. Epub 2010 Dec 14.

Abstract

Lymphoscintigraphy is a nuclear medicine procedure that is used to detect sentinel lymph nodes (SLNs). This project sought to investigate fusion of planar scintigrams with CT topograms as a means of improving the anatomic reference for the SLN localization. Heretofore, the most common lymphoscintigraphy localization method has been backlighting with a (57)Co sheet source. Currently, the most precise method of localization through hybrid SPECT/CT increases the patient absorbed dose by a factor of 34 to 585 (depending on the specific CT technique factors) over the conventional (57)Co backlighting. The new approach described herein also uses a SPECT/CT scanner, which provides mechanically aligned planar scintigram and CT topogram data sets, but only increases the dose by a factor of two over that from (57)Co backlighting. Planar nuclear medicine image fusion with CT topograms has been proven feasible and offers a clinically suitable compromise between improved anatomic details and minimally increased radiation dose.

摘要

淋巴闪烁显像术是一种用于检测前哨淋巴结(SLN)的核医学检查方法。该项目旨在研究平面闪烁图与CT地形图的融合,以此作为改善前哨淋巴结定位解剖参考的一种手段。迄今为止,最常见的淋巴闪烁显像定位方法是使用(57)Co片源进行背光照相。目前,通过SPECT/CT混合技术进行定位的最精确方法,与传统的(57)Co背光照相相比,会使患者吸收剂量增加34至585倍(具体取决于特定的CT技术因素)。本文所述的新方法同样使用SPECT/CT扫描仪,它能提供机械对齐的平面闪烁图和CT地形图数据集,但相比(57)Co背光照相,仅使剂量增加一倍。平面核医学图像与CT地形图的融合已被证明是可行的,并且在改善解剖细节和辐射剂量增加最小之间提供了临床上合适的折衷方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee49/3065894/e6a790edd754/IJMI2011-298102.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验