Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America.
PLoS Genet. 2011 Apr;7(4):e1002038. doi: 10.1371/journal.pgen.1002038. Epub 2011 Apr 7.
Significant advances have been made in the discovery of genes affecting bone mineral density (BMD); however, our understanding of its genetic basis remains incomplete. In the current study, genome-wide association (GWA) and co-expression network analysis were used in the recently described Hybrid Mouse Diversity Panel (HMDP) to identify and functionally characterize novel BMD genes. In the HMDP, a GWA of total body, spinal, and femoral BMD revealed four significant associations (-log10P>5.39) affecting at least one BMD trait on chromosomes (Chrs.) 7, 11, 12, and 17. The associations implicated a total of 163 genes with each association harboring between 14 and 112 genes. This list was reduced to 26 functional candidates by identifying those genes that were regulated by local eQTL in bone or harbored potentially functional non-synonymous (NS) SNPs. This analysis revealed that the most significant BMD SNP on Chr. 12 was a NS SNP in the additional sex combs like-2 (Asxl2) gene that was predicted to be functional. The involvement of Asxl2 in the regulation of bone mass was confirmed by the observation that Asxl2 knockout mice had reduced BMD. To begin to unravel the mechanism through which Asxl2 influenced BMD, a gene co-expression network was created using cortical bone gene expression microarray data from the HMDP strains. Asxl2 was identified as a member of a co-expression module enriched for genes involved in the differentiation of myeloid cells. In bone, osteoclasts are bone-resorbing cells of myeloid origin, suggesting that Asxl2 may play a role in osteoclast differentiation. In agreement, the knockdown of Asxl2 in bone marrow macrophages impaired their ability to form osteoclasts. This study identifies a new regulator of BMD and osteoclastogenesis and highlights the power of GWA and systems genetics in the mouse for dissecting complex genetic traits.
在发现影响骨密度(BMD)的基因方面已经取得了重大进展;然而,我们对其遗传基础的理解仍然不完整。在目前的研究中,全基因组关联(GWA)和共表达网络分析被用于最近描述的杂种鼠多样性面板(HMDP)中,以鉴定和功能表征新的 BMD 基因。在 HMDP 中,对全身、脊柱和股骨 BMD 的 GWA 揭示了四个显著的关联(-log10P>5.39),这些关联影响了染色体 7、11、12 和 17 上至少一个 BMD 特征。这些关联总共涉及 163 个基因,每个关联都包含 14 到 112 个基因。通过确定在骨骼中受局部 eQTL 调节或含有潜在功能非同义(NS)SNP 的基因,将该列表减少到 26 个功能候选基因。这一分析表明,在 Chr.12 上最显著的 BMD SNP 是一个位于额外性别梳样 2(Asxl2)基因中的 NS SNP,该 SNP 被预测为具有功能。Asxl2 敲除小鼠的 BMD 降低证实了 Asxl2 参与调节骨量。为了开始揭示 Asxl2 影响 BMD 的机制,使用来自 HMDP 品系的皮质骨基因表达微阵列数据创建了一个基因共表达网络。Asxl2 被鉴定为一个富含参与髓细胞分化的基因的共表达模块的成员。在骨骼中,破骨细胞是骨髓来源的骨吸收细胞,这表明 Asxl2 可能在破骨细胞分化中发挥作用。事实上,骨髓巨噬细胞中 Asxl2 的敲低削弱了它们形成破骨细胞的能力。这项研究确定了一个新的 BMD 和破骨细胞生成调节剂,并强调了 GWA 和系统遗传学在小鼠中用于剖析复杂遗传特征的强大功能。