Suppr超能文献

通过共表达网络和 GWAS 数据的整合鉴定骨密度的核心模块。

Identification of a Core Module for Bone Mineral Density through the Integration of a Co-expression Network and GWAS Data.

机构信息

Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.

Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.

出版信息

Cell Rep. 2020 Sep 15;32(11):108145. doi: 10.1016/j.celrep.2020.108145.

Abstract

The "omnigenic" model of the genetic architecture of complex traits proposed two categories of causal genes: core and peripheral. Core genes are hypothesized to directly regulate disease and may serve as therapeutic targets. Using a cell-type- and time-point-specific gene co-expression network for mineralizing osteoblasts, we identify a co-expression module enriched for genes implicated by bone mineral density (BMD) genome-wide association studies (GWASs), correlated with in vitro osteoblast mineralization and associated with skeletal phenotypes in human monogenic disease and mouse knockouts. Four genes from this module (B4GALNT3, CADM1, DOCK9, and GPR133) are located within the BMD GWAS loci with colocalizing expression quantitative trait loci (eQTL) and exhibit altered BMD in mouse knockouts, suggesting that they are causal genetic drivers of BMD in humans. Our network-based approach identifies a "core" module for BMD and provides a resource for expanding our understanding of the genetics of bone mass.

摘要

“全基因型”复杂性状遗传结构模型提出了两类因果基因:核心基因和外围基因。核心基因被假设可直接调控疾病,可能成为治疗靶点。我们利用矿化成骨细胞的细胞类型和时间点特异性基因共表达网络,鉴定出一个富含骨密度全基因组关联研究(GWAS)所涉及基因的共表达模块,与体外成骨细胞矿化相关,并与人类单基因疾病和小鼠基因敲除中的骨骼表型相关。该模块中的四个基因(B4GALNT3、CADM1、DOCK9 和 GPR133)位于骨密度 GWAS 位点内,具有共表达数量性状基因座(eQTL),并在小鼠基因敲除中表现出骨密度改变,表明它们是人类骨密度的因果遗传驱动因素。我们的基于网络的方法确定了一个 BMD 的“核心”模块,并为扩展我们对骨量遗传学的理解提供了资源。

相似文献

4
Mouse genome-wide association and systems genetics identifies Lhfp as a regulator of bone mass.
PLoS Genet. 2019 May 1;15(5):e1008123. doi: 10.1371/journal.pgen.1008123. eCollection 2019 May.
6
Systems genetic analysis of osteoblast-lineage cells.
PLoS Genet. 2012;8(12):e1003150. doi: 10.1371/journal.pgen.1003150. Epub 2012 Dec 27.
7
Mouse genome-wide association and systems genetics identify Asxl2 as a regulator of bone mineral density and osteoclastogenesis.
PLoS Genet. 2011 Apr;7(4):e1002038. doi: 10.1371/journal.pgen.1002038. Epub 2011 Apr 7.
8
Using "-omics" Data to Inform Genome-wide Association Studies (GWASs) in the Osteoporosis Field.
Curr Osteoporos Rep. 2021 Aug;19(4):369-380. doi: 10.1007/s11914-021-00684-w. Epub 2021 Jun 14.
10

引用本文的文献

1
Co-expression of prepulse inhibition and Schizophrenia genes in the mouse and human brain.
Neurosci Appl. 2024 Jun 7;3:104075. doi: 10.1016/j.nsa.2024.104075. eCollection 2024.
2
The mechanosensitive adhesion G protein-coupled receptor 133 (GPR133/ADGRD1) enhances bone formation.
Signal Transduct Target Ther. 2025 Jun 30;10(1):199. doi: 10.1038/s41392-025-02291-y.
3
Genome-wide association study reveals the genetic mechanism of wing bone strength in Cornish White.
Poult Sci. 2025 May 20;104(8):105324. doi: 10.1016/j.psj.2025.105324.
6
Genome-Wide Association Study of Reproductive Traits in Large White Pigs.
Animals (Basel). 2024 Oct 6;14(19):2874. doi: 10.3390/ani14192874.
9
Genomic Analysis of Lymphoma Risk in Bullmastiff Dogs.
Vet Sci. 2023 Dec 14;10(12):703. doi: 10.3390/vetsci10120703.
10
Lymphoma in Border Collies: Genome-Wide Association and Pedigree Analysis.
Vet Sci. 2023 Sep 19;10(9):581. doi: 10.3390/vetsci10090581.

本文引用的文献

1
Trans Effects on Gene Expression Can Drive Omnigenic Inheritance.
Cell. 2019 May 2;177(4):1022-1034.e6. doi: 10.1016/j.cell.2019.04.014.
2
Mendelian bone fragility disorders.
Bone. 2019 Sep;126:11-17. doi: 10.1016/j.bone.2019.04.021. Epub 2019 Apr 27.
3
An atlas of genetic influences on osteoporosis in humans and mice.
Nat Genet. 2019 Feb;51(2):258-266. doi: 10.1038/s41588-018-0302-x. Epub 2018 Dec 31.
4
Common Disease Is More Complex Than Implied by the Core Gene Omnigenic Model.
Cell. 2018 Jun 14;173(7):1573-1580. doi: 10.1016/j.cell.2018.05.051.
5
Hierarchical analysis of RNA-seq reads improves the accuracy of allele-specific expression.
Bioinformatics. 2018 Jul 1;34(13):2177-2184. doi: 10.1093/bioinformatics/bty078.
6
Genetic effects on gene expression across human tissues.
Nature. 2017 Oct 11;550(7675):204-213. doi: 10.1038/nature24277.
7
FAM20C regulates osteoblast behaviors and intracellular signaling pathways in a cell-autonomous manner.
J Cell Physiol. 2018 Apr;233(4):3476-3486. doi: 10.1002/jcp.26200. Epub 2017 Oct 27.
9
An Expanded View of Complex Traits: From Polygenic to Omnigenic.
Cell. 2017 Jun 15;169(7):1177-1186. doi: 10.1016/j.cell.2017.05.038.
10
Negative feedback loop of bone resorption by NFATc1-dependent induction of Cadm1.
PLoS One. 2017 Apr 17;12(4):e0175632. doi: 10.1371/journal.pone.0175632. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验