Suppr超能文献

猪诱导多能干细胞向杆状光感受器的分化及其在视网膜中的整合。

Differentiation of induced pluripotent stem cells of swine into rod photoreceptors and their integration into the retina.

机构信息

Department of Ophthalmology, The second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.

出版信息

Stem Cells. 2011 Jun;29(6):972-80. doi: 10.1002/stem.637.

Abstract

Absence of a regenerative pathway for damaged retina following injury or disease has led to experiments using stem cell transplantation for retinal repair, and encouraging results have been obtained in rodents. The swine eye is a closer anatomical and physiological match to the human eye, but embryonic stem cells have not been isolated from pig, and photoreceptor differentiation has not been demonstrated with induced pluripotent stem cells (iPSCs) of swine. Here, we subjected iPSCs of swine to a rod photoreceptor differentiation protocol consisting of floating culture as embryoid bodies followed by differentiation in adherent culture. Real-time PCR and immunostaining of differentiated cells demonstrated loss of expression of the pluripotent genes POU5F1, NANOG, and SOX2 and induction of rod photoreceptor genes RCVRN, NRL, RHO, and ROM1. While these differentiated cells displayed neuronal morphology, culturing on a Matrigel substratum triggered a further morphological change resulting in concentration of rhodopsin (RHO) and rod outer segment-specific membrane protein 1 in outer segment-like projections resembling those on primary cultures of rod photoreceptors. The differentiated cells were transplanted into the subretinal space of pigs treated with iodoacetic acid to eliminate rod photoreceptors. Three weeks after transplantation, engrafted RHO+ cells were evident in the outer nuclear layer where photoreceptors normally reside. A portion of these transplanted cells had generated projections resembling outer segments. These results demonstrate that iPSCs of swine can differentiate into photoreceptors in culture, and these cells can integrate into the damaged swine neural retina, thus, laying a foundation for future studies using the pig as a model for retinal stem cell transplantation.

摘要

由于受损视网膜在损伤或疾病后缺乏再生途径,因此进行了使用干细胞移植进行视网膜修复的实验,并且在啮齿动物中已经获得了令人鼓舞的结果。猪眼在解剖学和生理学上更接近人类眼睛,但尚未从猪中分离出胚胎干细胞,并且未用猪的诱导多能干细胞(iPSC)证明光感受器分化。在这里,我们将猪的 iPSC 置于杆状光感受器分化方案中,该方案包括作为胚状体的悬浮培养,然后在贴壁培养中进行分化。实时 PCR 和分化细胞的免疫染色显示多能基因 POU5F1、NANOG 和 SOX2 的表达丧失以及杆状光感受器基因 RCVRN、NRL、RHO 和 ROM1 的诱导。虽然这些分化的细胞显示出神经元形态,但是在 Matrigel 基质上培养会触发进一步的形态变化,导致视紫红质(RHO)和杆状外节特异性膜蛋白 1 在类似于杆状光感受器原代培养物的外节样突起中浓缩。分化的细胞被移植到用碘乙酸处理以消除杆状光感受器的猪的视网膜下空间中。移植后 3 周,在光感受器通常存在的外核层中可以检测到移植的 RHO+细胞。这些移植细胞的一部分已经产生了类似于外节的突起。这些结果表明,猪的 iPSC 可以在培养中分化为光感受器,并且这些细胞可以整合到受损的猪神经视网膜中,从而为将来使用猪作为视网膜干细胞移植模型的研究奠定了基础。

相似文献

6
Integration-free induced pluripotent stem cells derived from retinitis pigmentosa patient for disease modeling.
Stem Cells Transl Med. 2012 Jun;1(6):503-9. doi: 10.5966/sctm.2012-0005. Epub 2012 Jun 1.
7
Transplantation of photoreceptors derived from human Muller glia restore rod function in the P23H rat.
Stem Cells Transl Med. 2014 Mar;3(3):323-33. doi: 10.5966/sctm.2013-0112. Epub 2014 Jan 29.
10
CRX Expression in Pluripotent Stem Cell-Derived Photoreceptors Marks a Transplantable Subpopulation of Early Cones.
Stem Cells. 2019 May;37(5):609-622. doi: 10.1002/stem.2974. Epub 2019 Jan 30.

引用本文的文献

1
Robust generation of photoreceptor-dominant retinal organoids from porcine induced pluripotent stem cells.
Stem Cell Reports. 2025 Apr 8;20(4):102425. doi: 10.1016/j.stemcr.2025.102425. Epub 2025 Mar 6.
2
Large animal model species in pluripotent stem cell therapy research and development for retinal diseases: a systematic review.
Front Ophthalmol (Lausanne). 2024 Aug 26;4:1377098. doi: 10.3389/fopht.2024.1377098. eCollection 2024.
4
Determining Photoreceptor Cell Identity: Rod Versus Cone Fate Governed by tbx2b Opposing nrl.
Invest Ophthalmol Vis Sci. 2024 Jan 2;65(1):39. doi: 10.1167/iovs.65.1.39.
5
Human Induced Pluripotent Spheroids' Growth Is Driven by Viscoelastic Properties and Macrostructure of 3D Hydrogel Environment.
Bioengineering (Basel). 2023 Dec 13;10(12):1418. doi: 10.3390/bioengineering10121418.
7
Stem cell therapy in retinal diseases.
Neural Regen Res. 2023 Jul;18(7):1478-1485. doi: 10.4103/1673-5374.361537.
8
Characterization of The Retinal Progenitor Cells Generated Using Co-Culture Systems.
Cell J. 2022 Mar;24(3):127-132. doi: 10.22074/cellj.2022.7764.
9
The Therapeutic Potential of Exosomes in Soft Tissue Repair and Regeneration.
Int J Mol Sci. 2022 Mar 31;23(7):3869. doi: 10.3390/ijms23073869.
10
A Microfluidic Eye Facsimile System to Examine the Migration of Stem-like Cells.
Micromachines (Basel). 2022 Mar 2;13(3):406. doi: 10.3390/mi13030406.

本文引用的文献

1
The cell biology of vision.
J Cell Biol. 2010 Sep 20;190(6):953-63. doi: 10.1083/jcb.201006020.
2
Regenerative medicine for retinal diseases: activating endogenous repair mechanisms.
Trends Mol Med. 2010 Apr;16(4):193-202. doi: 10.1016/j.molmed.2010.02.003. Epub 2010 Mar 19.
3
Cell type differentiation dynamics in the developing porcine retina.
Dev Neurosci. 2010 Mar;32(1):47-58. doi: 10.1159/000261704. Epub 2010 Feb 12.
6
The promise of stem cell research in pigs and other ungulate species.
Stem Cell Rev Rep. 2010 Mar;6(1):31-41. doi: 10.1007/s12015-009-9101-1.
7
Using stem cells to mend the retina in ocular disease.
Regen Med. 2009 Nov;4(6):855-64. doi: 10.2217/rme.09.59.
8
Induced pluripotent stem cells from swine (Sus scrofa): why they may prove to be important.
Cell Cycle. 2009 Oct 1;8(19):3078-81. doi: 10.4161/cc.8.19.9589. Epub 2009 Oct 21.
9
Modeling early retinal development with human embryonic and induced pluripotent stem cells.
Proc Natl Acad Sci U S A. 2009 Sep 29;106(39):16698-703. doi: 10.1073/pnas.0905245106. Epub 2009 Aug 25.
10
Strategies for retinal repair: cell replacement and regeneration.
Prog Brain Res. 2009;175:23-31. doi: 10.1016/S0079-6123(09)17502-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验