Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Japan.
Stem Cells. 2013 Jun;31(6):1149-59. doi: 10.1002/stem.1372.
Replacement of dysfunctional or dying photoreceptors offers a promising approach for retinal neurodegenerative diseases, including age-related macular degeneration and retinitis pigmentosa. Several studies have demonstrated the integration and differentiation of developing rod photoreceptors when transplanted in wild-type or degenerating retina; however, the physiology and function of the donor cells are not adequately defined. Here, we describe the physiological properties of developing rod photoreceptors that are tagged with green fluorescent protein (GFP) driven by the promoter of rod differentiation factor, Nrl. GFP-tagged developing rods show Ca(2 +) responses and rectifier outward currents that are smaller than those observed in fully developed photoreceptors, suggesting their immature developmental state. These immature rods also exhibit hyperpolarization-activated current (Ih ) induced by the activation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. When transplanted into the subretinal space of wild-type or retinal degeneration mice, GFP-tagged developing rods can integrate into the photoreceptor outer nuclear layer in wild-type mouse retina and exhibit Ca(2 +) responses and membrane current comparable to native rod photoreceptors. A proportion of grafted rods develop rhodopsin-positive outer segment-like structures within 2 weeks after transplantation into the retina of Crx-knockout mice and produce rectifier outward current and Ih upon membrane depolarization and hyperpolarization. GFP-positive rods derived from induced pluripotent stem (iPS) cells also display similar membrane current Ih as native developing rod photoreceptors, express rod-specific phototransduction genes, and HCN-1 channels. We conclude that Nrl-promoter-driven GFP-tagged donor photoreceptors exhibit physiological characteristics of rods and that iPS cell-derived rods in vitro may provide a renewable source for cell-replacement therapy.
在视网膜神经退行性疾病(包括年龄相关性黄斑变性和色素性视网膜炎)中,替代功能失调或死亡的光感受器提供了一种很有前途的方法。几项研究表明,当移植到野生型或变性视网膜中时,发育中的杆状光感受器可以整合和分化;然而,供体细胞的生理学和功能没有得到充分定义。在这里,我们描述了由杆状分化因子 Nrl 的启动子驱动 GFP 标记的发育中的杆状光感受器的生理特性。GFP 标记的发育中的杆状光感受器表现出 Ca(2+)反应和整流外向电流,其幅度小于完全发育的光感受器观察到的幅度,表明它们处于不成熟的发育状态。这些不成熟的杆状光感受器还表现出由超极化激活的环核苷酸门控(HCN)通道激活引起的超极化激活电流(Ih)。当将 GFP 标记的发育中的杆状光感受器移植到野生型或视网膜变性小鼠的视网膜下腔时,它们可以整合到野生型小鼠视网膜的光感受器外核层中,并表现出与天然杆状光感受器相当的 Ca(2+)反应和膜电流。在 Crx 敲除小鼠的视网膜中移植后 2 周内,一部分移植的杆状光感受器会发展出视紫红质阳性的外节样结构,并在膜去极化和超极化时产生整流外向电流和 Ih。源自诱导多能干细胞(iPS)的 GFP 阳性杆状光感受器也表现出与天然发育中的杆状光感受器相似的膜电流 Ih,表达杆状特异性光转导基因和 HCN-1 通道。我们得出结论,Nrl 启动子驱动的 GFP 标记供体光感受器表现出杆状光感受器的生理特征,体外 iPS 细胞衍生的杆状光感受器可能为细胞替代治疗提供可再生的来源。