Biomedical Photonic Imaging Group, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
Nano Lett. 2011 May 11;11(5):1887-94. doi: 10.1021/nl103884b. Epub 2011 Apr 14.
Gold nanorods (AuNR) can be tailored to possess an intense and narrow longitudinal plasmon (LP) absorption peak in the far-red to near-infrared wavelength region, where tissue is relatively transparent to light. This makes AuNRs excellent candidates as contrast agents for photoacoustic imaging, and as photothermal therapeutic agents. The favorable optical properties of AuNR which depend on the physical parameters of shape, size and plasmonic coupling effects, are required to be stable during use. We investigate the changes that are likely to occur in these physical parameters in the setting of photothermal therapeutics, and the influence that these changes have on the optical properties and the capacity to achieve target cell death. To this end we study 3 sets of interactions: pulsed light with AuNR, AuNR with cells, and pulsed light with cells incubated with AuNR. In the first situation we ascertain the threshold value of fluence required for photothermal melting or reshaping of AuNR to shorter AuNR or nanospheres, which results in drastic changes in optical properties. In the second situation when cells are exposed to antibody-conjugated AuNR, we observe using transmission electron microscopy (TEM) that the particles are closely packed and clustered inside vesicles in the cells. Using dark-field microscopy we show that plasmonic interactions between AuNRs in this situation causes blue-shifting of the LP absorption peak. As a consequence, no direct lethal damage to cells can be inflicted by laser irradiation at the LP peak. On the other hand, using irradiation at the transverse peak (TP) wavelength in the green, at comparative fluences, extensive cell death can be achieved. We attribute this behavior on the one hand to the photoreshaping of AuNR into spheres and on the other hand to clustering of AuNR inside cells. Both effects create sufficiently high optical absorption at 532 nm, which otherwise would have been present at the LP peak. We discuss implications of these finding on the application of these particles in biomedicine.
金纳米棒(AuNR)可以被调整为具有在远红外到近红外波长区域内的强烈和窄的纵向等离子体(LP)吸收峰,在该区域组织对光相对透明。这使得 AuNR 成为光声成像的对比剂和光热治疗剂的优秀候选物。AuNR 的有利光学性质取决于形状、尺寸和等离子体耦合效应的物理参数,在使用过程中需要稳定。我们研究了在光热治疗环境中这些物理参数可能发生的变化,以及这些变化对光学性质和实现靶细胞死亡的能力的影响。为此,我们研究了 3 组相互作用:脉冲光与 AuNR、AuNR 与细胞、以及孵育有 AuNR 的细胞与脉冲光的相互作用。在第一种情况下,我们确定了光热熔化或重塑 AuNR 为较短的 AuNR 或纳米球所需的光强阈值,这导致光学性质发生剧烈变化。在第二种情况下,当细胞暴露于抗体偶联的 AuNR 时,我们使用透射电子显微镜(TEM)观察到,颗粒在细胞内的囊泡中紧密堆积和聚集。使用暗场显微镜,我们表明在这种情况下 AuNR 之间的等离子体相互作用导致 LP 吸收峰的蓝移。因此,不能通过在 LP 峰处的激光照射对细胞造成直接致命损伤。另一方面,在比较的光强下,使用在绿色的横向峰(TP)波长处的照射,可以实现广泛的细胞死亡。我们将这种行为归因于一方面 AuNR 被光重塑为球体,另一方面 AuNR 在细胞内聚集。这两种效应都在 532nm 处产生了足够高的光吸收,否则这种光吸收本来会出现在 LP 峰处。我们讨论了这些发现对这些粒子在生物医学中的应用的影响。