Suppr超能文献

使用组合分类器对细胞色素 P450 抑制剂和非抑制剂进行分类。

Classification of cytochrome P450 inhibitors and noninhibitors using combined classifiers.

机构信息

Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, China.

出版信息

J Chem Inf Model. 2011 May 23;51(5):996-1011. doi: 10.1021/ci200028n. Epub 2011 Apr 14.

Abstract

Adverse side effects of drug-drug interactions induced by human cytochrome P450 (CYP) inhibition is an important consideration, especially, during the research phase of drug discovery. It is highly desirable to develop computational models that can predict the inhibitive effect of a compound against a specific CYP isoform. In this study, inhibitor predicting models were developed for five major CYP isoforms, namely 1A2, 2C9, 2C19, 2D6, and 3A4, using a combined classifier algorithm on a large data set containing more than 24,700 unique compounds, extracted from PubChem. The combined classifiers algorithm is an ensemble of different independent machine learning classifiers including support vector machine, C4.5 decision tree, k-nearest neighbor, and naïve Bayes, fused by a back-propagation artificial neural network (BP-ANN). All developed models were validated by 5-fold cross-validation and a diverse validation set composed of about 9000 diverse unique compounds. The range of the area under the receiver operating characteristic curve (AUC) for the validation sets was 0.764 to 0.815 for CYP1A2, 0.837 to 0.861 for CYP2C9, 0.793 to 0.842 for CYP2C19, 0.839 to 0.886 for CYP2D6, and 0.754 to 0.790 for CYP3A4, respectively, using the new developed combined classifiers. The overall performance of the combined classifiers fused by BP-ANN was superior to that of three classic fusion techniques (Mean, Maximum, and Multiply). The chemical spaces of data sets were explored by multidimensional scaling plots, and the use of applicability domain improved the prediction accuracies of models. In addition, some representative substructure fragments differentiating CYP inhibitors and noninhibitors were characterized by the substructure fragment analysis. These classification models are applicable for virtual screening of the five major CYP isoforms inhibitors or can be used as simple filters of potential chemicals in drug discovery.

摘要

药物-药物相互作用引起的不良反应是一个重要的考虑因素,特别是在药物发现的研究阶段。开发能够预测化合物对特定 CYP 同工酶抑制作用的计算模型是非常理想的。在这项研究中,使用包含超过 24700 个独特化合物的大型数据集,基于一种组合分类器算法,为五个主要 CYP 同工酶(1A2、2C9、2C19、2D6 和 3A4)开发了抑制剂预测模型。组合分类器算法是一种集成了不同独立机器学习分类器的集合,包括支持向量机、C4.5 决策树、k-最近邻和朴素贝叶斯,并通过反向传播人工神经网络(BP-ANN)融合。所有开发的模型都通过 5 倍交叉验证和一个由大约 9000 个不同独特化合物组成的多样化验证集进行验证。验证集的接收器操作特征曲线(AUC)的范围为 CYP1A2 为 0.764 至 0.815,CYP2C9 为 0.837 至 0.861,CYP2C19 为 0.793 至 0.842,CYP2D6 为 0.839 至 0.886,CYP3A4 为 0.754 至 0.790,分别使用新开发的组合分类器。通过 BP-ANN 融合的组合分类器的整体性能优于三种经典融合技术(均值、最大值和乘法)。通过多维尺度图探索数据集的化学空间,并应用适用性域提高模型的预测精度。此外,通过亚结构片段分析,表征了区分 CYP 抑制剂和非抑制剂的一些代表性亚结构片段。这些分类模型可用于虚拟筛选五种主要 CYP 同工酶抑制剂,也可用作药物发现中潜在化学物质的简单筛选器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验