Suppr超能文献

用于预测细胞色素P450酶可逆性和时间依赖性抑制作用的新型(定量)构效关系模型

Novel (Q)SAR models for prediction of reversible and time-dependent inhibition of cytochrome P450 enzymes.

作者信息

Faramarzi Sadegh, Bassan Arianna, Cross Kevin P, Yang Xinning, Myatt Glenn J, Volpe Donna A, Stavitskaya Lidiya

机构信息

Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States.

Instem Inc., Conshohocken, PA, United States.

出版信息

Front Pharmacol. 2025 Feb 12;15:1451164. doi: 10.3389/fphar.2024.1451164. eCollection 2024.

Abstract

The 2020 FDA drug-drug interaction (DDI) guidance includes a consideration for metabolites with structural alerts for potential mechanism-based inhibition (MBI) and describes how this information may be used to determine whether studies need to be conducted to evaluate the inhibitory potential of a metabolite on CYP enzymes. To facilitate identification of structural alerts, an extensive literature search was performed and alerts for mechanism-based inhibition of cytochrome P450 enzymes (CYP) were collected. Furthermore, five quantitative structure-activity relationship (QSAR) models were developed to predict not only time-dependent inhibition of CYP3A4, an enzyme that metabolizes approximately 50% of all marketed drugs, but also reversible inhibition of 3A4, 2C9, 2C19 and 2D6. The non-proprietary training database for the QSAR models contains data for 10,129 chemicals harvested from FDA drug approval packages and published literature. The cross-validation performance statistics for the new CYP QSAR models range from 78% to 84% sensitivity and 79%-84% normalized negative predictivity. Additionally, the performance of the newly developed QSAR models was assessed using external validation sets. Overall performance statistics showed up to 75% in sensitivity and up to 80% in normalized negative predictivity. The newly developed models will provide a faster and more effective evaluation of potential drug-drug interaction caused by metabolites.

摘要

2020年美国食品药品监督管理局(FDA)的药物相互作用(DDI)指南考虑了具有潜在基于机制抑制(MBI)结构警示的代谢物,并描述了如何利用这些信息来确定是否需要开展研究以评估代谢物对细胞色素P450酶(CYP)的抑制潜力。为便于识别结构警示,进行了广泛的文献检索,并收集了基于机制抑制细胞色素P450酶(CYP)的警示信息。此外,还开发了五个定量构效关系(QSAR)模型,不仅用于预测对约50%已上市药物进行代谢的CYP3A4酶的时间依赖性抑制,还用于预测对3A4、2C9、2C19和2D6的可逆抑制。QSAR模型的非专利训练数据库包含从FDA药物批准文件和已发表文献中收集的10129种化学品的数据。新的CYP QSAR模型的交叉验证性能统计数据显示,灵敏度范围为78%至84%,标准化阴性预测值为79%至84%。此外,还使用外部验证集对新开发的QSAR模型的性能进行了评估。总体性能统计数据显示,灵敏度高达75%,标准化阴性预测值高达80%。新开发的模型将为代谢物引起的潜在药物相互作用提供更快、更有效的评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d0f/11860084/dbbf7397970f/fphar-15-1451164-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验