Suppr超能文献

利用深度学习提高细胞色素P450抑制作用小数据集预测模型的准确性。

Improving the accuracy of prediction models for small datasets of Cytochrome P450 inhibition with deep learning.

作者信息

Permadi Elpri Eka, Watanabe Reiko, Mizuguchi Kenji

机构信息

Laboratory for Computational Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.

Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Meatpro Building, Kawasan Sains dan Teknologi (KST) Soekarno, Jl. Raya Jakarta-Bogor KM 46, Cibinong, Jawa Barat, 16911, Indonesia.

出版信息

J Cheminform. 2025 Apr 30;17(1):66. doi: 10.1186/s13321-025-01015-2.

Abstract

The cytochrome P450 (CYP) superfamily metabolises a wide range of compounds; however, drug-induced CYP inhibition can lead to adverse interactions. Identifying potential CYP inhibitors is crucial for safe drug administration. This study investigated the application of deep learning techniques to the prediction of CYP inhibition, focusing on the challenges posed by limited datasets for CYP2B6 and CYP2C8 isoforms. To tackle these limitations, we leveraged larger datasets for related CYP isoforms, compiling comprehensive data from public databases containing IC50 values for 12,369 compounds that target seven CYP isoforms. We constructed single-task, fine-tuning, multitask, and multitask models incorporating data imputation on the missing values. Notably, the multitask models with data imputation demonstrated significant improvement in CYP inhibition prediction over the single-task models. Using the most accurate prediction models, we evaluated the inhibitory activity of approved drugs against CYP2B6 and CYP2C8. Among the 1,808 approved drugs analysed, our multitask models with data imputation identified 161 and 154 potential inhibitors of CYP2B6 and CYP2C8, respectively. This study underscores the significant potential of multitask deep learning, particularly when utilising a graph convolutional network with data imputation, to enhance the accuracy of CYP inhibition predictions under the conditions of limited data availability.Scientific contributionThis study demonstrates that even with small datasets, accurate prediction models can be constructed by utilising related data effectively. Also, our imputation techniques on the missing values improved the prediction accuracy of CYP2B6 and CYP2C8 inhibition significantly.

摘要

细胞色素P450(CYP)超家族可代谢多种化合物;然而,药物诱导的CYP抑制可导致不良相互作用。识别潜在的CYP抑制剂对于安全用药至关重要。本研究调查了深度学习技术在CYP抑制预测中的应用,重点关注CYP2B6和CYP2C8亚型数据集有限所带来的挑战。为克服这些限制,我们利用了相关CYP亚型的更大数据集,从包含针对七种CYP亚型的12369种化合物IC50值的公共数据库中汇编了综合数据。我们构建了单任务、微调、多任务以及对缺失值进行数据插补的多任务模型。值得注意的是,进行数据插补的多任务模型在CYP抑制预测方面比单任务模型有显著改进。使用最准确的预测模型,我们评估了已批准药物对CYP2B6和CYP2C8的抑制活性。在分析的1808种已批准药物中,我们进行数据插补的多任务模型分别识别出161种和154种CYP2B6和CYP2C8的潜在抑制剂。本研究强调了多任务深度学习的巨大潜力,特别是在使用带有数据插补的图卷积网络时,能够在数据可用性有限的条件下提高CYP抑制预测的准确性。

科学贡献

本研究表明,即使数据集较小,通过有效利用相关数据也可以构建准确的预测模型。此外,我们对缺失值的数据插补技术显著提高了CYP2B6和CYP2C8抑制的预测准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2840/12044814/1c8af7964784/13321_2025_1015_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验