Suppr超能文献

通过纳米晶诱导仿生矿化构建荧光纳米结构壳聚糖-羟基磷灰石支架及其细胞生物相容性。

Construction of a fluorescent nanostructured chitosan-hydroxyapatite scaffold by nanocrystallon induced biomimetic mineralization and its cell biocompatibility.

机构信息

Center of Bio & Micro/nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, 27 Shanda Nanlu, Jinan 250100, P.R.China.

出版信息

ACS Appl Mater Interfaces. 2011 May;3(5):1692-701. doi: 10.1021/am2002185. Epub 2011 Apr 20.

Abstract

Biomaterial surfaces and their nanostructures can significantly influence cell growth and viability. Thus, manipulating surface characteristics of scaffolds can be a potential strategy to control cell functions for stem cell tissue engineering. In this study, in order to construct a hydroxyapatite (HAp) coated genipin-chitosan conjugation scaffold (HGCCS) with a well-defined HAp nanostructured surface, we have developed a simple and controllable approach that allows construction of a two-level, three-dimensional (3D) networked structure to provide sufficient calcium source and achieve desired mechanical function and mass transport (permeability and diffusion) properties. Using a nontoxic cross-linker (genipin) and a nanocrystallon induced biomimetic mineralization method, we first assembled a layer of HAp network-like nanostructure on a 3D porous chitosan-based framework. X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) analysis confirm that the continuous network-like nanostructure on the channel surface of the HGCCS is composed of crystalline HAp. Compressive testing demonstrated that the strength of the HGCCS is apparently enhanced because of the strong cross-linking of genipin and the resulting reinforcement of the HAp nanonetwork. The fluorescence properties of genipin-chitosan conjugation for convenient monitoring of the 3D porous scaffold biodegradability and cell localization in the scaffold was specifically explored using confocal laser scanning microscopy (CLSM). Furthermore, through scanning electron microscope (SEM) observation and immunofluorescence measurements of F-actin, we found that the HAp network-like nanostructure on the surface of the HGCCS can influence the morphology and integrin-mediated cytoskeleton organization of rat bone marrow-derived mesenchymal stem cells (BMSCs). Based on cell proliferation assays, rat BMSCs tend to have higher viability on HGCCS in vitro. The results of this study suggest that the fluorescent two-level 3D nanostructured chitosan-HAp scaffold will be a promising scaffold for bone tissue engineering application.

摘要

生物材料表面及其纳米结构可以显著影响细胞的生长和活力。因此,操纵支架的表面特性可能是控制干细胞组织工程中细胞功能的一种潜在策略。在这项研究中,为了构建具有明确定义的 HAp 纳米结构表面的羟基磷灰石(HAp)涂层京尼平壳聚糖缀合物支架(HGCCS),我们开发了一种简单且可控的方法,允许构建两级、三维(3D)网络结构,以提供足够的钙源,并实现所需的机械功能和质量传输(渗透性和扩散性)特性。使用无毒交联剂(京尼平)和纳米晶诱导仿生矿化方法,我们首先在 3D 多孔壳聚糖基框架上组装了一层 HAp 网络状纳米结构。X 射线衍射(XRD)和高分辨率透射电子显微镜(HRTEM)分析证实,HGCCS 通道表面上的连续网络状纳米结构由结晶 HAp 组成。压缩测试表明,由于京尼平的强交联和 HAp 纳米网络的增强,HGCCS 的强度明显增强。通过共聚焦激光扫描显微镜(CLSM),我们专门探索了京尼平壳聚糖缀合物的荧光特性,以方便监测 3D 多孔支架的生物降解性和细胞在支架中的定位。此外,通过 SEM 观察和 F-肌动蛋白的免疫荧光测量,我们发现 HGCCS 表面上的 HAp 网络状纳米结构可以影响大鼠骨髓间充质干细胞(BMSCs)的形态和整合素介导的细胞骨架组织。基于细胞增殖测定,大鼠 BMSCs 在体外更倾向于在 HGCCS 上具有更高的活力。这项研究的结果表明,荧光两级 3D 纳米结构壳聚糖-HAp 支架将是一种有前途的骨组织工程应用支架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验