Suppr超能文献

BARTMAP:一种可行的二聚类结构。

BARTMAP: a viable structure for biclustering.

机构信息

GE Global Research, Niskayuna, NY 12309, USA.

出版信息

Neural Netw. 2011 Sep;24(7):709-16. doi: 10.1016/j.neunet.2011.03.020. Epub 2011 Apr 13.

Abstract

Clustering has been used extensively in the analysis of high-throughput messenger RNA (mRNA) expression profiling with microarrays. Furthermore, clustering has proven elemental in microRNA expression profiling, which demonstrates enormous promise in the areas of cancer diagnosis and treatment, gene function identification, therapy development and drug testing, and genetic regulatory network inference. However, such a practice is inherently limited due to the existence of many uncorrelated genes with respect to sample or condition clustering, or many unrelated samples or conditions with respect to gene clustering. Biclustering offers a solution to such problems by performing simultaneous clustering on both dimensions, or automatically integrating feature selection to clustering without any prior information, so that the relations of clusters of genes (generally, features) and clusters of samples or conditions (data objects) are established. However, the NP-complete computational complexity raises a great challenge to computational methods for identifying such local relations. Here, we propose and demonstrate that a neural-based classifier, ARTMAP, can be modified to perform biclustering in an efficient way, leading to a biclustering algorithm called Biclustering ARTMAP (BARTMAP). Experimental results on multiple human cancer data sets show that BARTMAP can achieve clustering structures with higher qualities than those achieved with other commonly used biclustering or clustering algorithms, and with fast run times.

摘要

聚类分析已广泛应用于微阵列高通量信使 RNA(mRNA)表达谱分析。此外,聚类分析在 microRNA 表达谱分析中已被证明是非常重要的,它在癌症诊断和治疗、基因功能鉴定、治疗开发和药物测试以及遗传调控网络推断等领域具有巨大的应用前景。然而,由于样本或条件聚类存在许多与基因不相关的基因,或者基因聚类存在许多与样本或条件不相关的基因,因此这种方法本质上存在局限性。双聚类通过在两个维度上同时进行聚类,或者在没有任何先验信息的情况下自动将特征选择集成到聚类中,从而解决了这些问题,从而建立了基因聚类(通常是特征)和样本或条件聚类(数据对象)的关系。然而,NP 完全的计算复杂性给识别这种局部关系的计算方法带来了巨大的挑战。在这里,我们提出并证明,基于神经网络的分类器 ARTMAP 可以被修改为以有效的方式执行双聚类,从而得到一种称为 Biclustering ARTMAP (BARTMAP) 的双聚类算法。在多个人类癌症数据集上的实验结果表明,BARTMAP 可以实现比其他常用的双聚类或聚类算法更高质量的聚类结构,并且运行时间更快。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验