Suppr超能文献

非经典 TGFβ 信号通路促进马凡综合征小鼠主动脉瘤的进展。

Noncanonical TGFβ signaling contributes to aortic aneurysm progression in Marfan syndrome mice.

机构信息

Howard Hughes Medical Institute and Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.

出版信息

Science. 2011 Apr 15;332(6027):358-61. doi: 10.1126/science.1192149.

Abstract

Transforming growth factor-β (TGFβ) signaling drives aneurysm progression in multiple disorders, including Marfan syndrome (MFS), and therapies that inhibit this signaling cascade are in clinical trials. TGFβ can stimulate multiple intracellular signaling pathways, but it is unclear which of these pathways drives aortic disease and, when inhibited, which result in disease amelioration. Here we show that extracellular signal-regulated kinase (ERK) 1 and 2 and Smad2 are activated in a mouse model of MFS, and both are inhibited by therapies directed against TGFβ. Whereas selective inhibition of ERK1/2 activation ameliorated aortic growth, Smad4 deficiency exacerbated aortic disease and caused premature death in MFS mice. Smad4-deficient MFS mice uniquely showed activation of Jun N-terminal kinase-1 (JNK1), and a JNK antagonist ameliorated aortic growth in MFS mice that lacked or retained full Smad4 expression. Thus, noncanonical (Smad-independent) TGFβ signaling is a prominent driver of aortic disease in MFS mice, and inhibition of the ERK1/2 or JNK1 pathways is a potential therapeutic strategy for the disease.

摘要

转化生长因子-β(TGFβ)信号通路驱动多种疾病(包括马凡综合征,MFS)的动脉瘤进展,目前有抑制该信号级联反应的疗法正在临床试验中。TGFβ 可以刺激多种细胞内信号通路,但尚不清楚这些通路中哪一种驱动主动脉疾病,以及当被抑制时哪种通路会导致疾病改善。我们在这里表明,MFS 小鼠模型中细胞外信号调节激酶(ERK)1 和 2 以及 Smad2 被激活,而针对 TGFβ 的治疗可同时抑制这两种激酶。选择性抑制 ERK1/2 的激活可改善主动脉生长,而 Smad4 缺失则加重了主动脉疾病,并导致 MFS 小鼠过早死亡。Smad4 缺失的 MFS 小鼠独特地表现出 Jun N-末端激酶-1(JNK1)的激活,而 JNK 拮抗剂可改善缺乏或保留完整 Smad4 表达的 MFS 小鼠的主动脉生长。因此,非典型(Smad 非依赖性)TGFβ 信号通路是 MFS 小鼠主动脉疾病的主要驱动因素,抑制 ERK1/2 或 JNK1 通路可能是该疾病的潜在治疗策略。

相似文献

1
Noncanonical TGFβ signaling contributes to aortic aneurysm progression in Marfan syndrome mice.
Science. 2011 Apr 15;332(6027):358-61. doi: 10.1126/science.1192149.
2
3
Angiotensin II type 2 receptor signaling attenuates aortic aneurysm in mice through ERK antagonism.
Science. 2011 Apr 15;332(6027):361-5. doi: 10.1126/science.1192152.
4
Medicine. Frightening risk of Marfan syndrome, and potential treatment, elucidated.
Science. 2011 Apr 15;332(6027):297. doi: 10.1126/science.332.6027.297.
5
Accelerated Marfan syndrome model recapitulates established signaling pathways.
J Thorac Cardiovasc Surg. 2020 May;159(5):1719-1726. doi: 10.1016/j.jtcvs.2019.05.043. Epub 2019 May 31.
6
Androgens Accentuate TGF-β Dependent Erk/Smad Activation During Thoracic Aortic Aneurysm Formation in Marfan Syndrome Male Mice.
J Am Heart Assoc. 2020 Oct 20;9(20):e015773. doi: 10.1161/JAHA.119.015773. Epub 2020 Oct 16.
7
Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome.
Science. 2006 Apr 7;312(5770):117-21. doi: 10.1126/science.1124287.
8
Proteomics reveals Rictor as a noncanonical TGF-β signaling target during aneurysm progression in Marfan mice.
Am J Physiol Heart Circ Physiol. 2018 Nov 1;315(5):H1112-H1126. doi: 10.1152/ajpheart.00089.2018. Epub 2018 Jul 13.
9
MMP-2 regulates Erk1/2 phosphorylation and aortic dilatation in Marfan syndrome.
Circ Res. 2012 Jun 8;110(12):e92-e101. doi: 10.1161/CIRCRESAHA.112.268268. Epub 2012 May 1.

引用本文的文献

1
Focal Adhesion Kinase Drives Rho/ROCK and mTOR Signaling to Protect and Augment Aortic Dissections.
JACC Basic Transl Sci. 2025 Aug 2;10(9):101353. doi: 10.1016/j.jacbts.2025.101353.
3
Hemodynamic forces prevent myxomatous valve disease in mice through KLF2/4 signaling.
J Clin Invest. 2025 Jun 16;135(12). doi: 10.1172/JCI186593.
4
Novel Aortic Dissection Model Links Endothelial Dysfunction and Immune Infiltration.
Circ Res. 2025 Jun 20;137(1):26-42. doi: 10.1161/CIRCRESAHA.125.326230. Epub 2025 May 14.
6
Endothelial Cell Senescence in Marfan Syndrome: Pathogenesis and Therapeutic Potential of TGF-β Pathway Inhibition.
J Am Heart Assoc. 2025 May 6;14(9):e037826. doi: 10.1161/JAHA.124.037826. Epub 2025 Apr 16.
7
Marfan syndrome: insights from animal models.
Front Genet. 2025 Jan 6;15:1463318. doi: 10.3389/fgene.2024.1463318. eCollection 2024.
8
MEK inhibitors: a promising targeted therapy for cardiovascular disease.
Front Cardiovasc Med. 2024 Jul 1;11:1404253. doi: 10.3389/fcvm.2024.1404253. eCollection 2024.
9
Coding and Non-Coding Transcriptomic Landscape of Aortic Complications in Marfan Syndrome.
Int J Mol Sci. 2024 Jul 5;25(13):7367. doi: 10.3390/ijms25137367.
10
TGF-β-Based Therapies for Treating Ocular Surface Disorders.
Cells. 2024 Jun 26;13(13):1105. doi: 10.3390/cells13131105.

本文引用的文献

1
TGF-beta in the pathogenesis and prevention of disease: a matter of aneurysmic proportions.
J Clin Invest. 2010 Feb;120(2):403-7. doi: 10.1172/JCI42014. Epub 2010 Jan 25.
3
The extracellular matrix: not just pretty fibrils.
Science. 2009 Nov 27;326(5957):1216-9. doi: 10.1126/science.1176009.
4
RDEA119/BAY 869766: a potent, selective, allosteric inhibitor of MEK1/2 for the treatment of cancer.
Cancer Res. 2009 Sep 1;69(17):6839-47. doi: 10.1158/0008-5472.CAN-09-0679. Epub 2009 Aug 25.
5
New regulatory mechanisms of TGF-beta receptor function.
Trends Cell Biol. 2009 Aug;19(8):385-94. doi: 10.1016/j.tcb.2009.05.008. Epub 2009 Aug 3.
7
TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta.
Mol Cell. 2008 Sep 26;31(6):918-24. doi: 10.1016/j.molcel.2008.09.002.
8
TGF-beta activates Erk MAP kinase signalling through direct phosphorylation of ShcA.
EMBO J. 2007 Sep 5;26(17):3957-67. doi: 10.1038/sj.emboj.7601818. Epub 2007 Aug 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验