Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars-Sinai Medical Center , Los Angeles, California.
Institute for Genetic Medicine, Johns Hopkins University , Baltimore, Maryland.
Am J Physiol Heart Circ Physiol. 2018 Nov 1;315(5):H1112-H1126. doi: 10.1152/ajpheart.00089.2018. Epub 2018 Jul 13.
The objective of the present study was to 1) analyze the ascending aortic proteome within a mouse model of Marfan syndrome (MFS; Fbn1) at early and late stages of aneurysm and 2) subsequently test a novel hypothesis formulated on the basis of this unbiased proteomic screen that links changes in integrin composition to transforming growth factor (TGF)-β-dependent activation of the rapamycin-independent component of mammalian target of rapamycin (Rictor) signaling pathway. Ingenuity Pathway Analysis of over 1,000 proteins quantified from the in vivo MFS mouse aorta by data-independent acquisition mass spectrometry revealed a predicted upstream regulator, Rictor, that was selectively activated in aged MFS mice. We validated this pattern of Rictor activation in vivo by Western blot analysis for phosphorylation on Thr in a separate cohort of mice and showed in vitro that TGF-β activates Rictor in an integrin-linked kinase-dependent manner in cultured aortic vascular smooth muscle cells. Expression of β-integrin was upregulated in the aged MFS aorta relative to young MFS mice and wild-type mice. We showed that β-integrin expression and activation modulated TGF-β-induced Rictor phosphorylation in vitro, and this signaling effect was associated with an altered vascular smooth muscle cell proliferative-migratory and metabolic in vitro phenotype that parallels the in vivo aneurysm phenotype in MFS. These results reveal that Rictor is a novel, context-dependent, noncanonical TGF-β signaling effector with potential pathogenic implications in aortic aneurysm. NEW & NOTEWORTHY We present the most comprehensive quantitative analysis of the ascending aortic aneurysm proteome in Marfan syndrome to date resulting in novel and potentially wide-reaching findings that expression and signaling by β-integrin constitute a modulator of transforming growth factor-β-induced rapamycin-independent component of mammalian target of rapamycin (Rictor) signaling and physiology in aortic vascular smooth muscle cells.
1)分析马凡综合征(MFS;Fbn1)小鼠模型中升主动脉蛋白质组在早期和晚期动脉瘤阶段的情况;2)随后根据该无偏蛋白质组筛选结果提出一个新的假说,该假说将整合素组成的变化与转化生长因子(TGF)-β依赖性雷帕霉素独立的哺乳动物靶标(Rictor)信号通路的组成部分激活联系起来。通过数据非依赖性采集质谱法从体内 MFS 小鼠主动脉中定量的超过 1000 种蛋白质的 IPA 分析显示,一种预测的上游调节剂 Rictor 在老年 MFS 小鼠中被选择性激活。我们通过 Western blot 分析在另一批小鼠中验证了这种 Rictor 激活模式,并在体外表明 TGF-β以整合素连接激酶依赖的方式在培养的主动脉血管平滑肌细胞中激活 Rictor。与年轻 MFS 小鼠和野生型小鼠相比,老年 MFS 主动脉中的β-整合素表达上调。我们表明,β-整合素的表达和激活在体外调节 TGF-β诱导的 Rictor 磷酸化,这种信号作用与改变的血管平滑肌细胞增殖-迁移和代谢体外表型相关,与 MFS 中的体内动脉瘤表型相似。这些结果表明 Rictor 是一种新的、上下文相关的非典型 TGF-β信号效应物,在主动脉瘤中具有潜在的致病意义。新的和值得注意的是,我们目前对马凡综合征升主动脉动脉瘤蛋白质组进行了最全面的定量分析,结果产生了新的、潜在广泛的发现,即β-整合素的表达和信号转导构成了转化生长因子-β诱导的雷帕霉素独立的哺乳动物靶标(Rictor)信号和主动脉血管平滑肌细胞生理学的调节剂。