Suppr超能文献

一种具有信息量的聚类大小数据的联合建模方法:对聚类大小模型的稳健性。

A joint modeling approach to data with informative cluster size: robustness to the cluster size model.

机构信息

Biostatistics and Bioinformatics Branch, Division of Epidemiology, Statistics and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20852, U.S.A.

出版信息

Stat Med. 2011 Jul 10;30(15):1825-36. doi: 10.1002/sim.4239. Epub 2011 Apr 15.

Abstract

In many biomedical and epidemiological studies, data are often clustered due to longitudinal follow up or repeated sampling. While in some clustered data the cluster size is pre-determined, in others it may be correlated with the outcome of subunits, resulting in informative cluster size. When the cluster size is informative, standard statistical procedures that ignore cluster size may produce biased estimates. One attractive framework for modeling data with informative cluster size is the joint modeling approach in which a common set of random effects are shared by both the outcome and cluster size models. In addition to making distributional assumptions on the shared random effects, the joint modeling approach needs to specify the cluster size model. Questions arise as to whether the joint modeling approach is robust to misspecification of the cluster size model. In this paper, we studied both asymptotic and finite-sample characteristics of the maximum likelihood estimators in joint models when the cluster size model is misspecified. We found that using an incorrect distribution for the cluster size may induce small to moderate biases, while using a misspecified functional form for the shared random parameter in the cluster size model results in nearly unbiased estimation of outcome model parameters. We also found that there is little efficiency loss under this model misspecification. A developmental toxicity study was used to motivate the research and to demonstrate the findings.

摘要

在许多生物医学和流行病学研究中,由于纵向随访或重复采样,数据通常是聚类的。虽然在某些聚类数据中,聚类大小是预先确定的,但在其他情况下,它可能与亚单位的结果相关,从而导致信息丰富的聚类大小。当聚类大小时,忽略聚类大小时的标准统计程序可能会产生有偏差的估计。一种用于对具有信息丰富聚类大小的数据进行建模的有吸引力的框架是联合建模方法,其中共同的一组随机效应同时用于结果和聚类大小模型。除了对共享随机效应进行分布假设外,联合建模方法还需要指定聚类大小模型。对于聚类大小模型的指定是否会影响联合建模方法的稳健性,存在一些问题。在本文中,我们研究了当聚类大小模型指定不正确时,联合模型中最大似然估计的渐近和有限样本特征。我们发现,使用不正确的聚类大小分布可能会导致小到中度的偏差,而在聚类大小模型中使用不正确的共享随机参数函数形式会导致对结果模型参数的近乎无偏差估计。我们还发现,在这种模型指定错误下,效率损失很小。发育毒性研究被用来激发研究并展示研究结果。

相似文献

1
A joint modeling approach to data with informative cluster size: robustness to the cluster size model.
Stat Med. 2011 Jul 10;30(15):1825-36. doi: 10.1002/sim.4239. Epub 2011 Apr 15.
2
A Bayesian approach for joint modeling of cluster size and subunit-specific outcomes.
Biometrics. 2003 Sep;59(3):521-30. doi: 10.1111/1541-0420.00062.
4
Comments about Joint Modeling of Cluster Size and Binary and Continuous Subunit-Specific Outcomes.
Biometrics. 2005 Sep;61(3):862-6; discussion 866-7. doi: 10.1111/j.1541-020X.2005.00409_1.x.
5
Modeling of correlated data with informative cluster sizes: An evaluation of joint modeling and within-cluster resampling approaches.
Stat Methods Med Res. 2017 Aug;26(4):1881-1895. doi: 10.1177/0962280215592268. Epub 2015 Jun 24.
6
Association models for clustered data with binary and continuous responses.
Biometrics. 2010 Mar;66(1):287-93. doi: 10.1111/j.1541-0420.2008.01232.x. Epub 2009 May 7.
8
A semiparametric joint model for cluster size and subunit-specific interval-censored outcomes.
Biometrics. 2023 Sep;79(3):2010-2022. doi: 10.1111/biom.13795. Epub 2022 Dec 15.

引用本文的文献

1
A semiparametric joint model for cluster size and subunit-specific interval-censored outcomes.
Biometrics. 2023 Sep;79(3):2010-2022. doi: 10.1111/biom.13795. Epub 2022 Dec 15.
2
Risk prediction in multicentre studies when there is confounding by cluster or informative cluster size.
BMC Med Res Methodol. 2021 Jul 4;21(1):135. doi: 10.1186/s12874-021-01321-x.
3
Neutral diagnosis: An innovative concept for medical device clinical trials.
Contemp Clin Trials Commun. 2019 Aug 21;16:100436. doi: 10.1016/j.conctc.2019.100436. eCollection 2019 Dec.
4
Pattern-mixture models with incomplete informative cluster size: Application to a repeated pregnancy study.
J R Stat Soc Ser C Appl Stat. 2018 Jan;67(1):255-273. doi: 10.1111/rssc.12226. Epub 2017 Jun 15.
5
Inferring marginal association with paired and unpaired clustered data.
Stat Methods Med Res. 2018 Jun;27(6):1806-1817. doi: 10.1177/0962280216669184. Epub 2016 Sep 20.
7
Review of methods for handling confounding by cluster and informative cluster size in clustered data.
Stat Med. 2014 Dec 30;33(30):5371-87. doi: 10.1002/sim.6277. Epub 2014 Aug 4.
8
Methods for observed-cluster inference when cluster size is informative: a review and clarifications.
Biometrics. 2014 Jun;70(2):449-56. doi: 10.1111/biom.12151. Epub 2014 Jan 30.
9
A model for repeated clustered data with informative cluster sizes.
Stat Med. 2014 Feb 28;33(5):738-59. doi: 10.1002/sim.5988. Epub 2013 Sep 30.

本文引用的文献

2
Joint modeling of survival and longitudinal data: likelihood approach revisited.
Biometrics. 2006 Dec;62(4):1037-43. doi: 10.1111/j.1541-0420.2006.00570.x.
3
Comments about Joint Modeling of Cluster Size and Binary and Continuous Subunit-Specific Outcomes.
Biometrics. 2005 Sep;61(3):862-6; discussion 866-7. doi: 10.1111/j.1541-020X.2005.00409_1.x.
4
A Bayesian approach for joint modeling of cluster size and subunit-specific outcomes.
Biometrics. 2003 Sep;59(3):521-30. doi: 10.1111/1541-0420.00062.
6
Marginal analyses of clustered data when cluster size is informative.
Biometrics. 2003 Mar;59(1):36-42. doi: 10.1111/1541-0420.00005.
7
A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data.
Biometrics. 2002 Dec;58(4):742-53. doi: 10.1111/j.0006-341x.2002.00742.x.
8
Linear mixed models with flexible distributions of random effects for longitudinal data.
Biometrics. 2001 Sep;57(3):795-802. doi: 10.1111/j.0006-341x.2001.00795.x.
9
Multi-level modelling of conception in artificial insemination by donor.
Stat Med. 1998 May 30;17(10):1137-56. doi: 10.1002/(sici)1097-0258(19980530)17:10<1137::aid-sim822>3.0.co;2-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验