Suppr超能文献

一种具有信息量的聚类大小数据的联合建模方法:对聚类大小模型的稳健性。

A joint modeling approach to data with informative cluster size: robustness to the cluster size model.

机构信息

Biostatistics and Bioinformatics Branch, Division of Epidemiology, Statistics and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20852, U.S.A.

出版信息

Stat Med. 2011 Jul 10;30(15):1825-36. doi: 10.1002/sim.4239. Epub 2011 Apr 15.

Abstract

In many biomedical and epidemiological studies, data are often clustered due to longitudinal follow up or repeated sampling. While in some clustered data the cluster size is pre-determined, in others it may be correlated with the outcome of subunits, resulting in informative cluster size. When the cluster size is informative, standard statistical procedures that ignore cluster size may produce biased estimates. One attractive framework for modeling data with informative cluster size is the joint modeling approach in which a common set of random effects are shared by both the outcome and cluster size models. In addition to making distributional assumptions on the shared random effects, the joint modeling approach needs to specify the cluster size model. Questions arise as to whether the joint modeling approach is robust to misspecification of the cluster size model. In this paper, we studied both asymptotic and finite-sample characteristics of the maximum likelihood estimators in joint models when the cluster size model is misspecified. We found that using an incorrect distribution for the cluster size may induce small to moderate biases, while using a misspecified functional form for the shared random parameter in the cluster size model results in nearly unbiased estimation of outcome model parameters. We also found that there is little efficiency loss under this model misspecification. A developmental toxicity study was used to motivate the research and to demonstrate the findings.

摘要

在许多生物医学和流行病学研究中,由于纵向随访或重复采样,数据通常是聚类的。虽然在某些聚类数据中,聚类大小是预先确定的,但在其他情况下,它可能与亚单位的结果相关,从而导致信息丰富的聚类大小。当聚类大小时,忽略聚类大小时的标准统计程序可能会产生有偏差的估计。一种用于对具有信息丰富聚类大小的数据进行建模的有吸引力的框架是联合建模方法,其中共同的一组随机效应同时用于结果和聚类大小模型。除了对共享随机效应进行分布假设外,联合建模方法还需要指定聚类大小模型。对于聚类大小模型的指定是否会影响联合建模方法的稳健性,存在一些问题。在本文中,我们研究了当聚类大小模型指定不正确时,联合模型中最大似然估计的渐近和有限样本特征。我们发现,使用不正确的聚类大小分布可能会导致小到中度的偏差,而在聚类大小模型中使用不正确的共享随机参数函数形式会导致对结果模型参数的近乎无偏差估计。我们还发现,在这种模型指定错误下,效率损失很小。发育毒性研究被用来激发研究并展示研究结果。

相似文献

6
Association models for clustered data with binary and continuous responses.具有二元和连续响应的聚类数据的关联模型。
Biometrics. 2010 Mar;66(1):287-93. doi: 10.1111/j.1541-0420.2008.01232.x. Epub 2009 May 7.

引用本文的文献

3
Neutral diagnosis: An innovative concept for medical device clinical trials.中性诊断:医疗器械临床试验的一个创新概念。
Contemp Clin Trials Commun. 2019 Aug 21;16:100436. doi: 10.1016/j.conctc.2019.100436. eCollection 2019 Dec.
5
Inferring marginal association with paired and unpaired clustered data.推断配对和非配对聚类数据的边缘关联。
Stat Methods Med Res. 2018 Jun;27(6):1806-1817. doi: 10.1177/0962280216669184. Epub 2016 Sep 20.

本文引用的文献

9
Multi-level modelling of conception in artificial insemination by donor.
Stat Med. 1998 May 30;17(10):1137-56. doi: 10.1002/(sici)1097-0258(19980530)17:10<1137::aid-sim822>3.0.co;2-1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验