当聚类大小具有信息性时对聚类数据的边际分析。

Marginal analyses of clustered data when cluster size is informative.

作者信息

Williamson John M, Datta Somnath, Satten Glen A

机构信息

Division of HIV/AIDS Prevention, National Center for HIV, STD and TB Prevention, Centers for Disease Control and Prevention, MS E-37, 1600 Clifton Road, NE, Atlanta, Georgia 30333, USA.

出版信息

Biometrics. 2003 Mar;59(1):36-42. doi: 10.1111/1541-0420.00005.

Abstract

We propose a new approach to fitting marginal models to clustered data when cluster size is informative. This approach uses a generalized estimating equation (GEE) that is weighted inversely with the cluster size. We show that our approach is asymptotically equivalent to within-cluster resampling (Hoffman, Sen, and Weinberg, 2001, Biometrika 73, 13-22), a computationally intensive approach in which replicate data sets containing a randomly selected observation from each cluster are analyzed, and the resulting estimates averaged. Using simulated data and an example involving dental health, we show the superior performance of our approach compared to unweighted GEE, the equivalence of our approach with WCR for large sample sizes, and the superior performance of our approach compared with WCR when sample sizes are small.

摘要

当聚类大小具有信息性时,我们提出了一种将边际模型拟合到聚类数据的新方法。该方法使用一种广义估计方程(GEE),其权重与聚类大小成反比。我们表明,我们的方法在渐近意义上等同于聚类内重采样(Hoffman、Sen和Weinberg,2001年,《生物统计学》73卷,第13 - 22页),这是一种计算量很大的方法,其中分析包含从每个聚类中随机选择的一个观察值的重复数据集,并对所得估计值求平均值。通过使用模拟数据和一个涉及牙齿健康的示例,我们展示了我们的方法相对于未加权GEE的优越性能、我们的方法与大样本量时的WCR的等效性,以及我们的方法在小样本量时相对于WCR的优越性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索